Solve for a (complex solution)
\left\{\begin{matrix}\\a=5m\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&m=0\text{ or }c=0\end{matrix}\right.
Solve for c (complex solution)
\left\{\begin{matrix}\\c=0\text{, }&\text{unconditionally}\\c\in \mathrm{C}\text{, }&m=\frac{a}{5}\text{ or }m=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=5m\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&m=0\text{ or }c=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}\\c=0\text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&m=\frac{a}{5}\text{ or }m=0\end{matrix}\right.
Share
Copied to clipboard
60cm^{2}+26acm=190cm^{2}
Swap sides so that all variable terms are on the left hand side.
26acm=190cm^{2}-60cm^{2}
Subtract 60cm^{2} from both sides.
26acm=130cm^{2}
Combine 190cm^{2} and -60cm^{2} to get 130cm^{2}.
26cma=130cm^{2}
The equation is in standard form.
\frac{26cma}{26cm}=\frac{130cm^{2}}{26cm}
Divide both sides by 26cm.
a=\frac{130cm^{2}}{26cm}
Dividing by 26cm undoes the multiplication by 26cm.
a=5m
Divide 130cm^{2} by 26cm.
190cm^{2}-60cm^{2}=26acm
Subtract 60cm^{2} from both sides.
130cm^{2}=26acm
Combine 190cm^{2} and -60cm^{2} to get 130cm^{2}.
130cm^{2}-26acm=0
Subtract 26acm from both sides.
\left(130m^{2}-26am\right)c=0
Combine all terms containing c.
c=0
Divide 0 by 130m^{2}-26am.
60cm^{2}+26acm=190cm^{2}
Swap sides so that all variable terms are on the left hand side.
26acm=190cm^{2}-60cm^{2}
Subtract 60cm^{2} from both sides.
26acm=130cm^{2}
Combine 190cm^{2} and -60cm^{2} to get 130cm^{2}.
26cma=130cm^{2}
The equation is in standard form.
\frac{26cma}{26cm}=\frac{130cm^{2}}{26cm}
Divide both sides by 26cm.
a=\frac{130cm^{2}}{26cm}
Dividing by 26cm undoes the multiplication by 26cm.
a=5m
Divide 130cm^{2} by 26cm.
190cm^{2}-60cm^{2}=26acm
Subtract 60cm^{2} from both sides.
130cm^{2}=26acm
Combine 190cm^{2} and -60cm^{2} to get 130cm^{2}.
130cm^{2}-26acm=0
Subtract 26acm from both sides.
\left(130m^{2}-26am\right)c=0
Combine all terms containing c.
c=0
Divide 0 by 130m^{2}-26am.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}