Evaluate
\frac{2\left(16m^{2}-332m-1075\right)}{4m+25}
Expand
\frac{2\left(16m^{2}-332m-1075\right)}{4m+25}
Share
Copied to clipboard
19-\frac{\left(105-4m\right)\left(8m+25\right)}{4m+25}
Express \left(105-4m\right)\times \frac{8m+25}{4m+25} as a single fraction.
19-\frac{840m+2625-32m^{2}-100m}{4m+25}
Apply the distributive property by multiplying each term of 105-4m by each term of 8m+25.
19-\frac{740m+2625-32m^{2}}{4m+25}
Combine 840m and -100m to get 740m.
\frac{19\left(4m+25\right)}{4m+25}-\frac{740m+2625-32m^{2}}{4m+25}
To add or subtract expressions, expand them to make their denominators the same. Multiply 19 times \frac{4m+25}{4m+25}.
\frac{19\left(4m+25\right)-\left(740m+2625-32m^{2}\right)}{4m+25}
Since \frac{19\left(4m+25\right)}{4m+25} and \frac{740m+2625-32m^{2}}{4m+25} have the same denominator, subtract them by subtracting their numerators.
\frac{76m+475-740m-2625+32m^{2}}{4m+25}
Do the multiplications in 19\left(4m+25\right)-\left(740m+2625-32m^{2}\right).
\frac{-664m-2150+32m^{2}}{4m+25}
Combine like terms in 76m+475-740m-2625+32m^{2}.
19-\frac{\left(105-4m\right)\left(8m+25\right)}{4m+25}
Express \left(105-4m\right)\times \frac{8m+25}{4m+25} as a single fraction.
19-\frac{840m+2625-32m^{2}-100m}{4m+25}
Apply the distributive property by multiplying each term of 105-4m by each term of 8m+25.
19-\frac{740m+2625-32m^{2}}{4m+25}
Combine 840m and -100m to get 740m.
\frac{19\left(4m+25\right)}{4m+25}-\frac{740m+2625-32m^{2}}{4m+25}
To add or subtract expressions, expand them to make their denominators the same. Multiply 19 times \frac{4m+25}{4m+25}.
\frac{19\left(4m+25\right)-\left(740m+2625-32m^{2}\right)}{4m+25}
Since \frac{19\left(4m+25\right)}{4m+25} and \frac{740m+2625-32m^{2}}{4m+25} have the same denominator, subtract them by subtracting their numerators.
\frac{76m+475-740m-2625+32m^{2}}{4m+25}
Do the multiplications in 19\left(4m+25\right)-\left(740m+2625-32m^{2}\right).
\frac{-664m-2150+32m^{2}}{4m+25}
Combine like terms in 76m+475-740m-2625+32m^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}