Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(19p-5-11p^{2})
Subtract 9 from 4 to get -5.
-11p^{2}+19p-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-19±\sqrt{19^{2}-4\left(-11\right)\left(-5\right)}}{2\left(-11\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-19±\sqrt{361-4\left(-11\right)\left(-5\right)}}{2\left(-11\right)}
Square 19.
p=\frac{-19±\sqrt{361+44\left(-5\right)}}{2\left(-11\right)}
Multiply -4 times -11.
p=\frac{-19±\sqrt{361-220}}{2\left(-11\right)}
Multiply 44 times -5.
p=\frac{-19±\sqrt{141}}{2\left(-11\right)}
Add 361 to -220.
p=\frac{-19±\sqrt{141}}{-22}
Multiply 2 times -11.
p=\frac{\sqrt{141}-19}{-22}
Now solve the equation p=\frac{-19±\sqrt{141}}{-22} when ± is plus. Add -19 to \sqrt{141}.
p=\frac{19-\sqrt{141}}{22}
Divide -19+\sqrt{141} by -22.
p=\frac{-\sqrt{141}-19}{-22}
Now solve the equation p=\frac{-19±\sqrt{141}}{-22} when ± is minus. Subtract \sqrt{141} from -19.
p=\frac{\sqrt{141}+19}{22}
Divide -19-\sqrt{141} by -22.
-11p^{2}+19p-5=-11\left(p-\frac{19-\sqrt{141}}{22}\right)\left(p-\frac{\sqrt{141}+19}{22}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{19-\sqrt{141}}{22} for x_{1} and \frac{19+\sqrt{141}}{22} for x_{2}.
19p-5-11p^{2}
Subtract 9 from 4 to get -5.