Factor
-11\left(p-\frac{19-\sqrt{141}}{22}\right)\left(p-\frac{\sqrt{141}+19}{22}\right)
Evaluate
-11p^{2}+19p-5
Share
Copied to clipboard
factor(19p-5-11p^{2})
Subtract 9 from 4 to get -5.
-11p^{2}+19p-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-19±\sqrt{19^{2}-4\left(-11\right)\left(-5\right)}}{2\left(-11\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-19±\sqrt{361-4\left(-11\right)\left(-5\right)}}{2\left(-11\right)}
Square 19.
p=\frac{-19±\sqrt{361+44\left(-5\right)}}{2\left(-11\right)}
Multiply -4 times -11.
p=\frac{-19±\sqrt{361-220}}{2\left(-11\right)}
Multiply 44 times -5.
p=\frac{-19±\sqrt{141}}{2\left(-11\right)}
Add 361 to -220.
p=\frac{-19±\sqrt{141}}{-22}
Multiply 2 times -11.
p=\frac{\sqrt{141}-19}{-22}
Now solve the equation p=\frac{-19±\sqrt{141}}{-22} when ± is plus. Add -19 to \sqrt{141}.
p=\frac{19-\sqrt{141}}{22}
Divide -19+\sqrt{141} by -22.
p=\frac{-\sqrt{141}-19}{-22}
Now solve the equation p=\frac{-19±\sqrt{141}}{-22} when ± is minus. Subtract \sqrt{141} from -19.
p=\frac{\sqrt{141}+19}{22}
Divide -19-\sqrt{141} by -22.
-11p^{2}+19p-5=-11\left(p-\frac{19-\sqrt{141}}{22}\right)\left(p-\frac{\sqrt{141}+19}{22}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{19-\sqrt{141}}{22} for x_{1} and \frac{19+\sqrt{141}}{22} for x_{2}.
19p-5-11p^{2}
Subtract 9 from 4 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}