Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(76x-133\right)\left(2x+3\right)-8x\left(1-4\right)=0
Use the distributive property to multiply 19 by 4x-7.
152x^{2}-38x-399-8x\left(1-4\right)=0
Use the distributive property to multiply 76x-133 by 2x+3 and combine like terms.
152x^{2}-38x-399-8x\left(-3\right)=0
Subtract 4 from 1 to get -3.
152x^{2}-38x-399-\left(-24x\right)=0
Multiply 8 and -3 to get -24.
152x^{2}-38x-399+24x=0
The opposite of -24x is 24x.
152x^{2}-14x-399=0
Combine -38x and 24x to get -14x.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 152\left(-399\right)}}{2\times 152}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 152 for a, -14 for b, and -399 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 152\left(-399\right)}}{2\times 152}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-608\left(-399\right)}}{2\times 152}
Multiply -4 times 152.
x=\frac{-\left(-14\right)±\sqrt{196+242592}}{2\times 152}
Multiply -608 times -399.
x=\frac{-\left(-14\right)±\sqrt{242788}}{2\times 152}
Add 196 to 242592.
x=\frac{-\left(-14\right)±2\sqrt{60697}}{2\times 152}
Take the square root of 242788.
x=\frac{14±2\sqrt{60697}}{2\times 152}
The opposite of -14 is 14.
x=\frac{14±2\sqrt{60697}}{304}
Multiply 2 times 152.
x=\frac{2\sqrt{60697}+14}{304}
Now solve the equation x=\frac{14±2\sqrt{60697}}{304} when ± is plus. Add 14 to 2\sqrt{60697}.
x=\frac{\sqrt{60697}+7}{152}
Divide 14+2\sqrt{60697} by 304.
x=\frac{14-2\sqrt{60697}}{304}
Now solve the equation x=\frac{14±2\sqrt{60697}}{304} when ± is minus. Subtract 2\sqrt{60697} from 14.
x=\frac{7-\sqrt{60697}}{152}
Divide 14-2\sqrt{60697} by 304.
x=\frac{\sqrt{60697}+7}{152} x=\frac{7-\sqrt{60697}}{152}
The equation is now solved.
\left(76x-133\right)\left(2x+3\right)-8x\left(1-4\right)=0
Use the distributive property to multiply 19 by 4x-7.
152x^{2}-38x-399-8x\left(1-4\right)=0
Use the distributive property to multiply 76x-133 by 2x+3 and combine like terms.
152x^{2}-38x-399-8x\left(-3\right)=0
Subtract 4 from 1 to get -3.
152x^{2}-38x-399-\left(-24x\right)=0
Multiply 8 and -3 to get -24.
152x^{2}-38x-399+24x=0
The opposite of -24x is 24x.
152x^{2}-14x-399=0
Combine -38x and 24x to get -14x.
152x^{2}-14x=399
Add 399 to both sides. Anything plus zero gives itself.
\frac{152x^{2}-14x}{152}=\frac{399}{152}
Divide both sides by 152.
x^{2}+\left(-\frac{14}{152}\right)x=\frac{399}{152}
Dividing by 152 undoes the multiplication by 152.
x^{2}-\frac{7}{76}x=\frac{399}{152}
Reduce the fraction \frac{-14}{152} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{76}x=\frac{21}{8}
Reduce the fraction \frac{399}{152} to lowest terms by extracting and canceling out 19.
x^{2}-\frac{7}{76}x+\left(-\frac{7}{152}\right)^{2}=\frac{21}{8}+\left(-\frac{7}{152}\right)^{2}
Divide -\frac{7}{76}, the coefficient of the x term, by 2 to get -\frac{7}{152}. Then add the square of -\frac{7}{152} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{76}x+\frac{49}{23104}=\frac{21}{8}+\frac{49}{23104}
Square -\frac{7}{152} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{76}x+\frac{49}{23104}=\frac{60697}{23104}
Add \frac{21}{8} to \frac{49}{23104} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{152}\right)^{2}=\frac{60697}{23104}
Factor x^{2}-\frac{7}{76}x+\frac{49}{23104}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{152}\right)^{2}}=\sqrt{\frac{60697}{23104}}
Take the square root of both sides of the equation.
x-\frac{7}{152}=\frac{\sqrt{60697}}{152} x-\frac{7}{152}=-\frac{\sqrt{60697}}{152}
Simplify.
x=\frac{\sqrt{60697}+7}{152} x=\frac{7-\sqrt{60697}}{152}
Add \frac{7}{152} to both sides of the equation.