Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{11a_{1}}{30d}+\frac{57}{10}\text{, }&d\neq 0\\a\in \mathrm{C}\text{, }&a_{1}=0\text{ and }d=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{11a_{1}}{30d}+\frac{57}{10}\text{, }&d\neq 0\\a\in \mathrm{R}\text{, }&a_{1}=0\text{ and }d=0\end{matrix}\right.
Solve for a_1
a_{1}=\frac{3d\left(57-10a\right)}{11}
Share
Copied to clipboard
38a_{1}+342d=30\left(2a_{1}+2ad\right)
Use the distributive property to multiply 19 by 2a_{1}+18d.
38a_{1}+342d=60a_{1}+60ad
Use the distributive property to multiply 30 by 2a_{1}+2ad.
60a_{1}+60ad=38a_{1}+342d
Swap sides so that all variable terms are on the left hand side.
60ad=38a_{1}+342d-60a_{1}
Subtract 60a_{1} from both sides.
60ad=-22a_{1}+342d
Combine 38a_{1} and -60a_{1} to get -22a_{1}.
60da=342d-22a_{1}
The equation is in standard form.
\frac{60da}{60d}=\frac{342d-22a_{1}}{60d}
Divide both sides by 60d.
a=\frac{342d-22a_{1}}{60d}
Dividing by 60d undoes the multiplication by 60d.
a=-\frac{11a_{1}}{30d}+\frac{57}{10}
Divide -22a_{1}+342d by 60d.
38a_{1}+342d=30\left(2a_{1}+2ad\right)
Use the distributive property to multiply 19 by 2a_{1}+18d.
38a_{1}+342d=60a_{1}+60ad
Use the distributive property to multiply 30 by 2a_{1}+2ad.
60a_{1}+60ad=38a_{1}+342d
Swap sides so that all variable terms are on the left hand side.
60ad=38a_{1}+342d-60a_{1}
Subtract 60a_{1} from both sides.
60ad=-22a_{1}+342d
Combine 38a_{1} and -60a_{1} to get -22a_{1}.
60da=342d-22a_{1}
The equation is in standard form.
\frac{60da}{60d}=\frac{342d-22a_{1}}{60d}
Divide both sides by 60d.
a=\frac{342d-22a_{1}}{60d}
Dividing by 60d undoes the multiplication by 60d.
a=-\frac{11a_{1}}{30d}+\frac{57}{10}
Divide -22a_{1}+342d by 60d.
38a_{1}+342d=30\left(2a_{1}+2ad\right)
Use the distributive property to multiply 19 by 2a_{1}+18d.
38a_{1}+342d=60a_{1}+60ad
Use the distributive property to multiply 30 by 2a_{1}+2ad.
38a_{1}+342d-60a_{1}=60ad
Subtract 60a_{1} from both sides.
-22a_{1}+342d=60ad
Combine 38a_{1} and -60a_{1} to get -22a_{1}.
-22a_{1}=60ad-342d
Subtract 342d from both sides.
\frac{-22a_{1}}{-22}=\frac{6d\left(10a-57\right)}{-22}
Divide both sides by -22.
a_{1}=\frac{6d\left(10a-57\right)}{-22}
Dividing by -22 undoes the multiplication by -22.
a_{1}=-\frac{3d\left(10a-57\right)}{11}
Divide 6d\left(-57+10a\right) by -22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}