Solve for x (complex solution)
x=\frac{5+13\sqrt{3}i}{38}\approx 0.131578947+0.592543697i
x=\frac{-13\sqrt{3}i+5}{38}\approx 0.131578947-0.592543697i
Graph
Share
Copied to clipboard
19x^{2}-5x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 19\times 7}}{2\times 19}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 19 for a, -5 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 19\times 7}}{2\times 19}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-76\times 7}}{2\times 19}
Multiply -4 times 19.
x=\frac{-\left(-5\right)±\sqrt{25-532}}{2\times 19}
Multiply -76 times 7.
x=\frac{-\left(-5\right)±\sqrt{-507}}{2\times 19}
Add 25 to -532.
x=\frac{-\left(-5\right)±13\sqrt{3}i}{2\times 19}
Take the square root of -507.
x=\frac{5±13\sqrt{3}i}{2\times 19}
The opposite of -5 is 5.
x=\frac{5±13\sqrt{3}i}{38}
Multiply 2 times 19.
x=\frac{5+13\sqrt{3}i}{38}
Now solve the equation x=\frac{5±13\sqrt{3}i}{38} when ± is plus. Add 5 to 13i\sqrt{3}.
x=\frac{-13\sqrt{3}i+5}{38}
Now solve the equation x=\frac{5±13\sqrt{3}i}{38} when ± is minus. Subtract 13i\sqrt{3} from 5.
x=\frac{5+13\sqrt{3}i}{38} x=\frac{-13\sqrt{3}i+5}{38}
The equation is now solved.
19x^{2}-5x+7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
19x^{2}-5x+7-7=-7
Subtract 7 from both sides of the equation.
19x^{2}-5x=-7
Subtracting 7 from itself leaves 0.
\frac{19x^{2}-5x}{19}=-\frac{7}{19}
Divide both sides by 19.
x^{2}-\frac{5}{19}x=-\frac{7}{19}
Dividing by 19 undoes the multiplication by 19.
x^{2}-\frac{5}{19}x+\left(-\frac{5}{38}\right)^{2}=-\frac{7}{19}+\left(-\frac{5}{38}\right)^{2}
Divide -\frac{5}{19}, the coefficient of the x term, by 2 to get -\frac{5}{38}. Then add the square of -\frac{5}{38} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{19}x+\frac{25}{1444}=-\frac{7}{19}+\frac{25}{1444}
Square -\frac{5}{38} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{19}x+\frac{25}{1444}=-\frac{507}{1444}
Add -\frac{7}{19} to \frac{25}{1444} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{38}\right)^{2}=-\frac{507}{1444}
Factor x^{2}-\frac{5}{19}x+\frac{25}{1444}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{38}\right)^{2}}=\sqrt{-\frac{507}{1444}}
Take the square root of both sides of the equation.
x-\frac{5}{38}=\frac{13\sqrt{3}i}{38} x-\frac{5}{38}=-\frac{13\sqrt{3}i}{38}
Simplify.
x=\frac{5+13\sqrt{3}i}{38} x=\frac{-13\sqrt{3}i+5}{38}
Add \frac{5}{38} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}