Evaluate
\frac{8024}{4031}\approx 1.990573059
Factor
\frac{17 \cdot 59 \cdot 2 ^ {3}}{29 \cdot 139} = 1\frac{3993}{4031} = 1.9905730587943438
Quiz
Arithmetic
5 problems similar to:
19 \times \left( \frac{ 1 }{ 9.5 } - \frac{ 1 }{ 2015.5 } \right)
Share
Copied to clipboard
19\left(\frac{10}{95}-\frac{1}{2015.5}\right)
Expand \frac{1}{9.5} by multiplying both numerator and the denominator by 10.
19\left(\frac{2}{19}-\frac{1}{2015.5}\right)
Reduce the fraction \frac{10}{95} to lowest terms by extracting and canceling out 5.
19\left(\frac{2}{19}-\frac{10}{20155}\right)
Expand \frac{1}{2015.5} by multiplying both numerator and the denominator by 10.
19\left(\frac{2}{19}-\frac{2}{4031}\right)
Reduce the fraction \frac{10}{20155} to lowest terms by extracting and canceling out 5.
19\left(\frac{8062}{76589}-\frac{38}{76589}\right)
Least common multiple of 19 and 4031 is 76589. Convert \frac{2}{19} and \frac{2}{4031} to fractions with denominator 76589.
19\times \frac{8062-38}{76589}
Since \frac{8062}{76589} and \frac{38}{76589} have the same denominator, subtract them by subtracting their numerators.
19\times \frac{8024}{76589}
Subtract 38 from 8062 to get 8024.
\frac{19\times 8024}{76589}
Express 19\times \frac{8024}{76589} as a single fraction.
\frac{152456}{76589}
Multiply 19 and 8024 to get 152456.
\frac{8024}{4031}
Reduce the fraction \frac{152456}{76589} to lowest terms by extracting and canceling out 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}