Evaluate
\frac{145}{18}\approx 8.055555556
Factor
\frac{5 \cdot 29}{2 \cdot 3 ^ {2}} = 8\frac{1}{18} = 8.055555555555555
Share
Copied to clipboard
\frac{57+1}{3}-\left(\frac{8\times 9+1}{9}+\frac{3\times 6+1}{6}\right)
Multiply 19 and 3 to get 57.
\frac{58}{3}-\left(\frac{8\times 9+1}{9}+\frac{3\times 6+1}{6}\right)
Add 57 and 1 to get 58.
\frac{58}{3}-\left(\frac{72+1}{9}+\frac{3\times 6+1}{6}\right)
Multiply 8 and 9 to get 72.
\frac{58}{3}-\left(\frac{73}{9}+\frac{3\times 6+1}{6}\right)
Add 72 and 1 to get 73.
\frac{58}{3}-\left(\frac{73}{9}+\frac{18+1}{6}\right)
Multiply 3 and 6 to get 18.
\frac{58}{3}-\left(\frac{73}{9}+\frac{19}{6}\right)
Add 18 and 1 to get 19.
\frac{58}{3}-\left(\frac{146}{18}+\frac{57}{18}\right)
Least common multiple of 9 and 6 is 18. Convert \frac{73}{9} and \frac{19}{6} to fractions with denominator 18.
\frac{58}{3}-\frac{146+57}{18}
Since \frac{146}{18} and \frac{57}{18} have the same denominator, add them by adding their numerators.
\frac{58}{3}-\frac{203}{18}
Add 146 and 57 to get 203.
\frac{348}{18}-\frac{203}{18}
Least common multiple of 3 and 18 is 18. Convert \frac{58}{3} and \frac{203}{18} to fractions with denominator 18.
\frac{348-203}{18}
Since \frac{348}{18} and \frac{203}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{145}{18}
Subtract 203 from 348 to get 145.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}