Evaluate
2
Factor
2
Share
Copied to clipboard
\frac{38+1}{2}\times \frac{1}{9}+\frac{-1.5}{\left(-3\right)^{2}}
Multiply 19 and 2 to get 38.
\frac{39}{2}\times \frac{1}{9}+\frac{-1.5}{\left(-3\right)^{2}}
Add 38 and 1 to get 39.
\frac{39\times 1}{2\times 9}+\frac{-1.5}{\left(-3\right)^{2}}
Multiply \frac{39}{2} times \frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{39}{18}+\frac{-1.5}{\left(-3\right)^{2}}
Do the multiplications in the fraction \frac{39\times 1}{2\times 9}.
\frac{13}{6}+\frac{-1.5}{\left(-3\right)^{2}}
Reduce the fraction \frac{39}{18} to lowest terms by extracting and canceling out 3.
\frac{13}{6}+\frac{-1.5}{9}
Calculate -3 to the power of 2 and get 9.
\frac{13}{6}+\frac{-15}{90}
Expand \frac{-1.5}{9} by multiplying both numerator and the denominator by 10.
\frac{13}{6}-\frac{1}{6}
Reduce the fraction \frac{-15}{90} to lowest terms by extracting and canceling out 15.
\frac{13-1}{6}
Since \frac{13}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{6}
Subtract 1 from 13 to get 12.
2
Divide 12 by 6 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}