Evaluate
\frac{19}{18}\approx 1.055555556
Factor
\frac{19}{2 \cdot 3 ^ {2}} = 1\frac{1}{18} = 1.0555555555555556
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)19}\\\end{array}
Use the 1^{st} digit 1 from dividend 19
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)19}\\\end{array}
Since 1 is less than 18, use the next digit 9 from dividend 19 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)19}\\\end{array}
Use the 2^{nd} digit 9 from dividend 19
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)19}\\\phantom{18)}\underline{\phantom{}18\phantom{}}\\\phantom{18)9}1\\\end{array}
Find closest multiple of 18 to 19. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 19 to get reminder 1. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1
Since 1 is less than 18, stop the division. The reminder is 1. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}