19 + \frac { 238 } { 20 } - ( 71 ) | 3 =
Evaluate
-\frac{1821}{10}=-182.1
Factor
-\frac{1821}{10} = -182\frac{1}{10} = -182.1
Share
Copied to clipboard
19+\frac{119}{10}-71|3|
Reduce the fraction \frac{238}{20} to lowest terms by extracting and canceling out 2.
\frac{190}{10}+\frac{119}{10}-71|3|
Convert 19 to fraction \frac{190}{10}.
\frac{190+119}{10}-71|3|
Since \frac{190}{10} and \frac{119}{10} have the same denominator, add them by adding their numerators.
\frac{309}{10}-71|3|
Add 190 and 119 to get 309.
\frac{309}{10}-71\times 3
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 3 is 3.
\frac{309}{10}-213
Multiply 71 and 3 to get 213.
\frac{309}{10}-\frac{2130}{10}
Convert 213 to fraction \frac{2130}{10}.
\frac{309-2130}{10}
Since \frac{309}{10} and \frac{2130}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{1821}{10}
Subtract 2130 from 309 to get -1821.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}