Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18x-1.5x^{2}+16+600x=0
Add 600x to both sides.
618x-1.5x^{2}+16=0
Combine 18x and 600x to get 618x.
-1.5x^{2}+618x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-618±\sqrt{618^{2}-4\left(-1.5\right)\times 16}}{2\left(-1.5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1.5 for a, 618 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-618±\sqrt{381924-4\left(-1.5\right)\times 16}}{2\left(-1.5\right)}
Square 618.
x=\frac{-618±\sqrt{381924+6\times 16}}{2\left(-1.5\right)}
Multiply -4 times -1.5.
x=\frac{-618±\sqrt{381924+96}}{2\left(-1.5\right)}
Multiply 6 times 16.
x=\frac{-618±\sqrt{382020}}{2\left(-1.5\right)}
Add 381924 to 96.
x=\frac{-618±2\sqrt{95505}}{2\left(-1.5\right)}
Take the square root of 382020.
x=\frac{-618±2\sqrt{95505}}{-3}
Multiply 2 times -1.5.
x=\frac{2\sqrt{95505}-618}{-3}
Now solve the equation x=\frac{-618±2\sqrt{95505}}{-3} when ± is plus. Add -618 to 2\sqrt{95505}.
x=-\frac{2\sqrt{95505}}{3}+206
Divide -618+2\sqrt{95505} by -3.
x=\frac{-2\sqrt{95505}-618}{-3}
Now solve the equation x=\frac{-618±2\sqrt{95505}}{-3} when ± is minus. Subtract 2\sqrt{95505} from -618.
x=\frac{2\sqrt{95505}}{3}+206
Divide -618-2\sqrt{95505} by -3.
x=-\frac{2\sqrt{95505}}{3}+206 x=\frac{2\sqrt{95505}}{3}+206
The equation is now solved.
18x-1.5x^{2}+16+600x=0
Add 600x to both sides.
618x-1.5x^{2}+16=0
Combine 18x and 600x to get 618x.
618x-1.5x^{2}=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
-1.5x^{2}+618x=-16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-1.5x^{2}+618x}{-1.5}=-\frac{16}{-1.5}
Divide both sides of the equation by -1.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{618}{-1.5}x=-\frac{16}{-1.5}
Dividing by -1.5 undoes the multiplication by -1.5.
x^{2}-412x=-\frac{16}{-1.5}
Divide 618 by -1.5 by multiplying 618 by the reciprocal of -1.5.
x^{2}-412x=\frac{32}{3}
Divide -16 by -1.5 by multiplying -16 by the reciprocal of -1.5.
x^{2}-412x+\left(-206\right)^{2}=\frac{32}{3}+\left(-206\right)^{2}
Divide -412, the coefficient of the x term, by 2 to get -206. Then add the square of -206 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-412x+42436=\frac{32}{3}+42436
Square -206.
x^{2}-412x+42436=\frac{127340}{3}
Add \frac{32}{3} to 42436.
\left(x-206\right)^{2}=\frac{127340}{3}
Factor x^{2}-412x+42436. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-206\right)^{2}}=\sqrt{\frac{127340}{3}}
Take the square root of both sides of the equation.
x-206=\frac{2\sqrt{95505}}{3} x-206=-\frac{2\sqrt{95505}}{3}
Simplify.
x=\frac{2\sqrt{95505}}{3}+206 x=-\frac{2\sqrt{95505}}{3}+206
Add 206 to both sides of the equation.