Evaluate
\frac{189731}{2977}\approx 63.73228082
Factor
\frac{337 \cdot 563}{13 \cdot 229} = 63\frac{2180}{2977} = 63.73228081961707
Share
Copied to clipboard
\begin{array}{l}\phantom{2977)}\phantom{1}\\2977\overline{)189731}\\\end{array}
Use the 1^{st} digit 1 from dividend 189731
\begin{array}{l}\phantom{2977)}0\phantom{2}\\2977\overline{)189731}\\\end{array}
Since 1 is less than 2977, use the next digit 8 from dividend 189731 and add 0 to the quotient
\begin{array}{l}\phantom{2977)}0\phantom{3}\\2977\overline{)189731}\\\end{array}
Use the 2^{nd} digit 8 from dividend 189731
\begin{array}{l}\phantom{2977)}00\phantom{4}\\2977\overline{)189731}\\\end{array}
Since 18 is less than 2977, use the next digit 9 from dividend 189731 and add 0 to the quotient
\begin{array}{l}\phantom{2977)}00\phantom{5}\\2977\overline{)189731}\\\end{array}
Use the 3^{rd} digit 9 from dividend 189731
\begin{array}{l}\phantom{2977)}000\phantom{6}\\2977\overline{)189731}\\\end{array}
Since 189 is less than 2977, use the next digit 7 from dividend 189731 and add 0 to the quotient
\begin{array}{l}\phantom{2977)}000\phantom{7}\\2977\overline{)189731}\\\end{array}
Use the 4^{th} digit 7 from dividend 189731
\begin{array}{l}\phantom{2977)}0000\phantom{8}\\2977\overline{)189731}\\\end{array}
Since 1897 is less than 2977, use the next digit 3 from dividend 189731 and add 0 to the quotient
\begin{array}{l}\phantom{2977)}0000\phantom{9}\\2977\overline{)189731}\\\end{array}
Use the 5^{th} digit 3 from dividend 189731
\begin{array}{l}\phantom{2977)}00006\phantom{10}\\2977\overline{)189731}\\\phantom{2977)}\underline{\phantom{}17862\phantom{9}}\\\phantom{2977)9}1111\\\end{array}
Find closest multiple of 2977 to 18973. We see that 6 \times 2977 = 17862 is the nearest. Now subtract 17862 from 18973 to get reminder 1111. Add 6 to quotient.
\begin{array}{l}\phantom{2977)}00006\phantom{11}\\2977\overline{)189731}\\\phantom{2977)}\underline{\phantom{}17862\phantom{9}}\\\phantom{2977)9}11111\\\end{array}
Use the 6^{th} digit 1 from dividend 189731
\begin{array}{l}\phantom{2977)}000063\phantom{12}\\2977\overline{)189731}\\\phantom{2977)}\underline{\phantom{}17862\phantom{9}}\\\phantom{2977)9}11111\\\phantom{2977)}\underline{\phantom{99}8931\phantom{}}\\\phantom{2977)99}2180\\\end{array}
Find closest multiple of 2977 to 11111. We see that 3 \times 2977 = 8931 is the nearest. Now subtract 8931 from 11111 to get reminder 2180. Add 3 to quotient.
\text{Quotient: }63 \text{Reminder: }2180
Since 2180 is less than 2977, stop the division. The reminder is 2180. The topmost line 000063 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 63.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}