Evaluate
\frac{631}{115}\approx 5.486956522
Factor
\frac{631}{5 \cdot 23} = 5\frac{56}{115} = 5.48695652173913
Share
Copied to clipboard
\begin{array}{l}\phantom{345)}\phantom{1}\\345\overline{)1893}\\\end{array}
Use the 1^{st} digit 1 from dividend 1893
\begin{array}{l}\phantom{345)}0\phantom{2}\\345\overline{)1893}\\\end{array}
Since 1 is less than 345, use the next digit 8 from dividend 1893 and add 0 to the quotient
\begin{array}{l}\phantom{345)}0\phantom{3}\\345\overline{)1893}\\\end{array}
Use the 2^{nd} digit 8 from dividend 1893
\begin{array}{l}\phantom{345)}00\phantom{4}\\345\overline{)1893}\\\end{array}
Since 18 is less than 345, use the next digit 9 from dividend 1893 and add 0 to the quotient
\begin{array}{l}\phantom{345)}00\phantom{5}\\345\overline{)1893}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1893
\begin{array}{l}\phantom{345)}000\phantom{6}\\345\overline{)1893}\\\end{array}
Since 189 is less than 345, use the next digit 3 from dividend 1893 and add 0 to the quotient
\begin{array}{l}\phantom{345)}000\phantom{7}\\345\overline{)1893}\\\end{array}
Use the 4^{th} digit 3 from dividend 1893
\begin{array}{l}\phantom{345)}0005\phantom{8}\\345\overline{)1893}\\\phantom{345)}\underline{\phantom{}1725\phantom{}}\\\phantom{345)9}168\\\end{array}
Find closest multiple of 345 to 1893. We see that 5 \times 345 = 1725 is the nearest. Now subtract 1725 from 1893 to get reminder 168. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }168
Since 168 is less than 345, stop the division. The reminder is 168. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}