Evaluate
\frac{63}{17}\approx 3.705882353
Factor
\frac{3 ^ {2} \cdot 7}{17} = 3\frac{12}{17} = 3.7058823529411766
Share
Copied to clipboard
\begin{array}{l}\phantom{51)}\phantom{1}\\51\overline{)189}\\\end{array}
Use the 1^{st} digit 1 from dividend 189
\begin{array}{l}\phantom{51)}0\phantom{2}\\51\overline{)189}\\\end{array}
Since 1 is less than 51, use the next digit 8 from dividend 189 and add 0 to the quotient
\begin{array}{l}\phantom{51)}0\phantom{3}\\51\overline{)189}\\\end{array}
Use the 2^{nd} digit 8 from dividend 189
\begin{array}{l}\phantom{51)}00\phantom{4}\\51\overline{)189}\\\end{array}
Since 18 is less than 51, use the next digit 9 from dividend 189 and add 0 to the quotient
\begin{array}{l}\phantom{51)}00\phantom{5}\\51\overline{)189}\\\end{array}
Use the 3^{rd} digit 9 from dividend 189
\begin{array}{l}\phantom{51)}003\phantom{6}\\51\overline{)189}\\\phantom{51)}\underline{\phantom{}153\phantom{}}\\\phantom{51)9}36\\\end{array}
Find closest multiple of 51 to 189. We see that 3 \times 51 = 153 is the nearest. Now subtract 153 from 189 to get reminder 36. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }36
Since 36 is less than 51, stop the division. The reminder is 36. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}