Evaluate
\frac{188}{49}\approx 3.836734694
Factor
\frac{2 ^ {2} \cdot 47}{7 ^ {2}} = 3\frac{41}{49} = 3.836734693877551
Share
Copied to clipboard
\begin{array}{l}\phantom{49)}\phantom{1}\\49\overline{)188}\\\end{array}
Use the 1^{st} digit 1 from dividend 188
\begin{array}{l}\phantom{49)}0\phantom{2}\\49\overline{)188}\\\end{array}
Since 1 is less than 49, use the next digit 8 from dividend 188 and add 0 to the quotient
\begin{array}{l}\phantom{49)}0\phantom{3}\\49\overline{)188}\\\end{array}
Use the 2^{nd} digit 8 from dividend 188
\begin{array}{l}\phantom{49)}00\phantom{4}\\49\overline{)188}\\\end{array}
Since 18 is less than 49, use the next digit 8 from dividend 188 and add 0 to the quotient
\begin{array}{l}\phantom{49)}00\phantom{5}\\49\overline{)188}\\\end{array}
Use the 3^{rd} digit 8 from dividend 188
\begin{array}{l}\phantom{49)}003\phantom{6}\\49\overline{)188}\\\phantom{49)}\underline{\phantom{}147\phantom{}}\\\phantom{49)9}41\\\end{array}
Find closest multiple of 49 to 188. We see that 3 \times 49 = 147 is the nearest. Now subtract 147 from 188 to get reminder 41. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }41
Since 41 is less than 49, stop the division. The reminder is 41. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}