Evaluate
5
Factor
5
Share
Copied to clipboard
\begin{array}{l}\phantom{375)}\phantom{1}\\375\overline{)1875}\\\end{array}
Use the 1^{st} digit 1 from dividend 1875
\begin{array}{l}\phantom{375)}0\phantom{2}\\375\overline{)1875}\\\end{array}
Since 1 is less than 375, use the next digit 8 from dividend 1875 and add 0 to the quotient
\begin{array}{l}\phantom{375)}0\phantom{3}\\375\overline{)1875}\\\end{array}
Use the 2^{nd} digit 8 from dividend 1875
\begin{array}{l}\phantom{375)}00\phantom{4}\\375\overline{)1875}\\\end{array}
Since 18 is less than 375, use the next digit 7 from dividend 1875 and add 0 to the quotient
\begin{array}{l}\phantom{375)}00\phantom{5}\\375\overline{)1875}\\\end{array}
Use the 3^{rd} digit 7 from dividend 1875
\begin{array}{l}\phantom{375)}000\phantom{6}\\375\overline{)1875}\\\end{array}
Since 187 is less than 375, use the next digit 5 from dividend 1875 and add 0 to the quotient
\begin{array}{l}\phantom{375)}000\phantom{7}\\375\overline{)1875}\\\end{array}
Use the 4^{th} digit 5 from dividend 1875
\begin{array}{l}\phantom{375)}0005\phantom{8}\\375\overline{)1875}\\\phantom{375)}\underline{\phantom{}1875\phantom{}}\\\phantom{375)9999}0\\\end{array}
Find closest multiple of 375 to 1875. We see that 5 \times 375 = 1875 is the nearest. Now subtract 1875 from 1875 to get reminder 0. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }0
Since 0 is less than 375, stop the division. The reminder is 0. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}