Evaluate
\frac{1856}{17}\approx 109.176470588
Factor
\frac{2 ^ {6} \cdot 29}{17} = 109\frac{3}{17} = 109.17647058823529
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)1856}\\\end{array}
Use the 1^{st} digit 1 from dividend 1856
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)1856}\\\end{array}
Since 1 is less than 17, use the next digit 8 from dividend 1856 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)1856}\\\end{array}
Use the 2^{nd} digit 8 from dividend 1856
\begin{array}{l}\phantom{17)}01\phantom{4}\\17\overline{)1856}\\\phantom{17)}\underline{\phantom{}17\phantom{99}}\\\phantom{17)9}1\\\end{array}
Find closest multiple of 17 to 18. We see that 1 \times 17 = 17 is the nearest. Now subtract 17 from 18 to get reminder 1. Add 1 to quotient.
\begin{array}{l}\phantom{17)}01\phantom{5}\\17\overline{)1856}\\\phantom{17)}\underline{\phantom{}17\phantom{99}}\\\phantom{17)9}15\\\end{array}
Use the 3^{rd} digit 5 from dividend 1856
\begin{array}{l}\phantom{17)}010\phantom{6}\\17\overline{)1856}\\\phantom{17)}\underline{\phantom{}17\phantom{99}}\\\phantom{17)9}15\\\end{array}
Since 15 is less than 17, use the next digit 6 from dividend 1856 and add 0 to the quotient
\begin{array}{l}\phantom{17)}010\phantom{7}\\17\overline{)1856}\\\phantom{17)}\underline{\phantom{}17\phantom{99}}\\\phantom{17)9}156\\\end{array}
Use the 4^{th} digit 6 from dividend 1856
\begin{array}{l}\phantom{17)}0109\phantom{8}\\17\overline{)1856}\\\phantom{17)}\underline{\phantom{}17\phantom{99}}\\\phantom{17)9}156\\\phantom{17)}\underline{\phantom{9}153\phantom{}}\\\phantom{17)999}3\\\end{array}
Find closest multiple of 17 to 156. We see that 9 \times 17 = 153 is the nearest. Now subtract 153 from 156 to get reminder 3. Add 9 to quotient.
\text{Quotient: }109 \text{Reminder: }3
Since 3 is less than 17, stop the division. The reminder is 3. The topmost line 0109 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 109.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}