Solve for x (complex solution)
x=-\frac{i\times 10\sqrt{12838969}}{143}\approx -0-250.569979617i
x=\frac{i\times 10\sqrt{12838969}}{143}\approx 250.569979617i
Graph
Share
Copied to clipboard
370\times 10^{6}=28.6\times 400\left(950-\frac{x^{2}}{2}\right)
Multiply both sides of the equation by 2.
370\times 1000000=28.6\times 400\left(950-\frac{x^{2}}{2}\right)
Calculate 10 to the power of 6 and get 1000000.
370000000=28.6\times 400\left(950-\frac{x^{2}}{2}\right)
Multiply 370 and 1000000 to get 370000000.
370000000=11440\left(950-\frac{x^{2}}{2}\right)
Multiply 28.6 and 400 to get 11440.
370000000=10868000+11440\left(-\frac{x^{2}}{2}\right)
Use the distributive property to multiply 11440 by 950-\frac{x^{2}}{2}.
370000000=10868000-5720x^{2}
Cancel out 2, the greatest common factor in 11440 and 2.
10868000-5720x^{2}=370000000
Swap sides so that all variable terms are on the left hand side.
-5720x^{2}=370000000-10868000
Subtract 10868000 from both sides.
-5720x^{2}=359132000
Subtract 10868000 from 370000000 to get 359132000.
x^{2}=\frac{359132000}{-5720}
Divide both sides by -5720.
x^{2}=-\frac{8978300}{143}
Reduce the fraction \frac{359132000}{-5720} to lowest terms by extracting and canceling out 40.
x=\frac{10\sqrt{12838969}i}{143} x=-\frac{10\sqrt{12838969}i}{143}
The equation is now solved.
370\times 10^{6}=28.6\times 400\left(950-\frac{x^{2}}{2}\right)
Multiply both sides of the equation by 2.
370\times 1000000=28.6\times 400\left(950-\frac{x^{2}}{2}\right)
Calculate 10 to the power of 6 and get 1000000.
370000000=28.6\times 400\left(950-\frac{x^{2}}{2}\right)
Multiply 370 and 1000000 to get 370000000.
370000000=11440\left(950-\frac{x^{2}}{2}\right)
Multiply 28.6 and 400 to get 11440.
370000000=10868000+11440\left(-\frac{x^{2}}{2}\right)
Use the distributive property to multiply 11440 by 950-\frac{x^{2}}{2}.
370000000=10868000-5720x^{2}
Cancel out 2, the greatest common factor in 11440 and 2.
10868000-5720x^{2}=370000000
Swap sides so that all variable terms are on the left hand side.
10868000-5720x^{2}-370000000=0
Subtract 370000000 from both sides.
-359132000-5720x^{2}=0
Subtract 370000000 from 10868000 to get -359132000.
-5720x^{2}-359132000=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-5720\right)\left(-359132000\right)}}{2\left(-5720\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5720 for a, 0 for b, and -359132000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-5720\right)\left(-359132000\right)}}{2\left(-5720\right)}
Square 0.
x=\frac{0±\sqrt{22880\left(-359132000\right)}}{2\left(-5720\right)}
Multiply -4 times -5720.
x=\frac{0±\sqrt{-8216940160000}}{2\left(-5720\right)}
Multiply 22880 times -359132000.
x=\frac{0±800\sqrt{12838969}i}{2\left(-5720\right)}
Take the square root of -8216940160000.
x=\frac{0±800\sqrt{12838969}i}{-11440}
Multiply 2 times -5720.
x=-\frac{10\sqrt{12838969}i}{143}
Now solve the equation x=\frac{0±800\sqrt{12838969}i}{-11440} when ± is plus.
x=\frac{10\sqrt{12838969}i}{143}
Now solve the equation x=\frac{0±800\sqrt{12838969}i}{-11440} when ± is minus.
x=-\frac{10\sqrt{12838969}i}{143} x=\frac{10\sqrt{12838969}i}{143}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}