184 \times 98 \% = 20 \% \times x
Solve for x
x = \frac{4508}{5} = 901\frac{3}{5} = 901.6
Graph
Share
Copied to clipboard
184\times \frac{49}{50}=\frac{20}{100}x
Reduce the fraction \frac{98}{100} to lowest terms by extracting and canceling out 2.
\frac{184\times 49}{50}=\frac{20}{100}x
Express 184\times \frac{49}{50} as a single fraction.
\frac{9016}{50}=\frac{20}{100}x
Multiply 184 and 49 to get 9016.
\frac{4508}{25}=\frac{20}{100}x
Reduce the fraction \frac{9016}{50} to lowest terms by extracting and canceling out 2.
\frac{4508}{25}=\frac{1}{5}x
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{1}{5}x=\frac{4508}{25}
Swap sides so that all variable terms are on the left hand side.
x=\frac{4508}{25}\times 5
Multiply both sides by 5, the reciprocal of \frac{1}{5}.
x=\frac{4508\times 5}{25}
Express \frac{4508}{25}\times 5 as a single fraction.
x=\frac{22540}{25}
Multiply 4508 and 5 to get 22540.
x=\frac{4508}{5}
Reduce the fraction \frac{22540}{25} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}