Evaluate
102
Factor
2\times 3\times 17
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)1836}\\\end{array}
Use the 1^{st} digit 1 from dividend 1836
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)1836}\\\end{array}
Since 1 is less than 18, use the next digit 8 from dividend 1836 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)1836}\\\end{array}
Use the 2^{nd} digit 8 from dividend 1836
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)1836}\\\phantom{18)}\underline{\phantom{}18\phantom{99}}\\\phantom{18)99}0\\\end{array}
Find closest multiple of 18 to 18. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 18 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{18)}01\phantom{5}\\18\overline{)1836}\\\phantom{18)}\underline{\phantom{}18\phantom{99}}\\\phantom{18)99}3\\\end{array}
Use the 3^{rd} digit 3 from dividend 1836
\begin{array}{l}\phantom{18)}010\phantom{6}\\18\overline{)1836}\\\phantom{18)}\underline{\phantom{}18\phantom{99}}\\\phantom{18)99}3\\\end{array}
Since 3 is less than 18, use the next digit 6 from dividend 1836 and add 0 to the quotient
\begin{array}{l}\phantom{18)}010\phantom{7}\\18\overline{)1836}\\\phantom{18)}\underline{\phantom{}18\phantom{99}}\\\phantom{18)99}36\\\end{array}
Use the 4^{th} digit 6 from dividend 1836
\begin{array}{l}\phantom{18)}0102\phantom{8}\\18\overline{)1836}\\\phantom{18)}\underline{\phantom{}18\phantom{99}}\\\phantom{18)99}36\\\phantom{18)}\underline{\phantom{99}36\phantom{}}\\\phantom{18)9999}0\\\end{array}
Find closest multiple of 18 to 36. We see that 2 \times 18 = 36 is the nearest. Now subtract 36 from 36 to get reminder 0. Add 2 to quotient.
\text{Quotient: }102 \text{Reminder: }0
Since 0 is less than 18, stop the division. The reminder is 0. The topmost line 0102 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 102.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}