Evaluate
612
Factor
2^{2}\times 3^{2}\times 17
Share
Copied to clipboard
\begin{array}{l}\phantom{299)}\phantom{1}\\299\overline{)182988}\\\end{array}
Use the 1^{st} digit 1 from dividend 182988
\begin{array}{l}\phantom{299)}0\phantom{2}\\299\overline{)182988}\\\end{array}
Since 1 is less than 299, use the next digit 8 from dividend 182988 and add 0 to the quotient
\begin{array}{l}\phantom{299)}0\phantom{3}\\299\overline{)182988}\\\end{array}
Use the 2^{nd} digit 8 from dividend 182988
\begin{array}{l}\phantom{299)}00\phantom{4}\\299\overline{)182988}\\\end{array}
Since 18 is less than 299, use the next digit 2 from dividend 182988 and add 0 to the quotient
\begin{array}{l}\phantom{299)}00\phantom{5}\\299\overline{)182988}\\\end{array}
Use the 3^{rd} digit 2 from dividend 182988
\begin{array}{l}\phantom{299)}000\phantom{6}\\299\overline{)182988}\\\end{array}
Since 182 is less than 299, use the next digit 9 from dividend 182988 and add 0 to the quotient
\begin{array}{l}\phantom{299)}000\phantom{7}\\299\overline{)182988}\\\end{array}
Use the 4^{th} digit 9 from dividend 182988
\begin{array}{l}\phantom{299)}0006\phantom{8}\\299\overline{)182988}\\\phantom{299)}\underline{\phantom{}1794\phantom{99}}\\\phantom{299)99}35\\\end{array}
Find closest multiple of 299 to 1829. We see that 6 \times 299 = 1794 is the nearest. Now subtract 1794 from 1829 to get reminder 35. Add 6 to quotient.
\begin{array}{l}\phantom{299)}0006\phantom{9}\\299\overline{)182988}\\\phantom{299)}\underline{\phantom{}1794\phantom{99}}\\\phantom{299)99}358\\\end{array}
Use the 5^{th} digit 8 from dividend 182988
\begin{array}{l}\phantom{299)}00061\phantom{10}\\299\overline{)182988}\\\phantom{299)}\underline{\phantom{}1794\phantom{99}}\\\phantom{299)99}358\\\phantom{299)}\underline{\phantom{99}299\phantom{9}}\\\phantom{299)999}59\\\end{array}
Find closest multiple of 299 to 358. We see that 1 \times 299 = 299 is the nearest. Now subtract 299 from 358 to get reminder 59. Add 1 to quotient.
\begin{array}{l}\phantom{299)}00061\phantom{11}\\299\overline{)182988}\\\phantom{299)}\underline{\phantom{}1794\phantom{99}}\\\phantom{299)99}358\\\phantom{299)}\underline{\phantom{99}299\phantom{9}}\\\phantom{299)999}598\\\end{array}
Use the 6^{th} digit 8 from dividend 182988
\begin{array}{l}\phantom{299)}000612\phantom{12}\\299\overline{)182988}\\\phantom{299)}\underline{\phantom{}1794\phantom{99}}\\\phantom{299)99}358\\\phantom{299)}\underline{\phantom{99}299\phantom{9}}\\\phantom{299)999}598\\\phantom{299)}\underline{\phantom{999}598\phantom{}}\\\phantom{299)999999}0\\\end{array}
Find closest multiple of 299 to 598. We see that 2 \times 299 = 598 is the nearest. Now subtract 598 from 598 to get reminder 0. Add 2 to quotient.
\text{Quotient: }612 \text{Reminder: }0
Since 0 is less than 299, stop the division. The reminder is 0. The topmost line 000612 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 612.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}