Solve for x
x=1828\sqrt{3567}\approx 109176.142668625
Graph
Share
Copied to clipboard
\frac{x}{3567^{\frac{1}{2}}}=1828
Swap sides so that all variable terms are on the left hand side.
\frac{x}{\sqrt{3567}}=1828
Reorder the terms.
\frac{x\sqrt{3567}}{\left(\sqrt{3567}\right)^{2}}=1828
Rationalize the denominator of \frac{x}{\sqrt{3567}} by multiplying numerator and denominator by \sqrt{3567}.
\frac{x\sqrt{3567}}{3567}=1828
The square of \sqrt{3567} is 3567.
x\sqrt{3567}=1828\times 3567
Multiply both sides by 3567.
x\sqrt{3567}=6520476
Multiply 1828 and 3567 to get 6520476.
\sqrt{3567}x=6520476
The equation is in standard form.
\frac{\sqrt{3567}x}{\sqrt{3567}}=\frac{6520476}{\sqrt{3567}}
Divide both sides by \sqrt{3567}.
x=\frac{6520476}{\sqrt{3567}}
Dividing by \sqrt{3567} undoes the multiplication by \sqrt{3567}.
x=1828\sqrt{3567}
Divide 6520476 by \sqrt{3567}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}