Evaluate
\frac{182}{25}=7.28
Factor
\frac{2 \cdot 7 \cdot 13}{5 ^ {2}} = 7\frac{7}{25} = 7.28
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)182}\\\end{array}
Use the 1^{st} digit 1 from dividend 182
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)182}\\\end{array}
Since 1 is less than 25, use the next digit 8 from dividend 182 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)182}\\\end{array}
Use the 2^{nd} digit 8 from dividend 182
\begin{array}{l}\phantom{25)}00\phantom{4}\\25\overline{)182}\\\end{array}
Since 18 is less than 25, use the next digit 2 from dividend 182 and add 0 to the quotient
\begin{array}{l}\phantom{25)}00\phantom{5}\\25\overline{)182}\\\end{array}
Use the 3^{rd} digit 2 from dividend 182
\begin{array}{l}\phantom{25)}007\phantom{6}\\25\overline{)182}\\\phantom{25)}\underline{\phantom{}175\phantom{}}\\\phantom{25)99}7\\\end{array}
Find closest multiple of 25 to 182. We see that 7 \times 25 = 175 is the nearest. Now subtract 175 from 182 to get reminder 7. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }7
Since 7 is less than 25, stop the division. The reminder is 7. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}