1815 \%
Evaluate
\frac{363}{20}=18.15
Factor
\frac{3 \cdot 11 ^ {2}}{2 ^ {2} \cdot 5} = 18\frac{3}{20} = 18.15
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)1815}\\\end{array}
Use the 1^{st} digit 1 from dividend 1815
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)1815}\\\end{array}
Since 1 is less than 100, use the next digit 8 from dividend 1815 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)1815}\\\end{array}
Use the 2^{nd} digit 8 from dividend 1815
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)1815}\\\end{array}
Since 18 is less than 100, use the next digit 1 from dividend 1815 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)1815}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1815
\begin{array}{l}\phantom{100)}001\phantom{6}\\100\overline{)1815}\\\phantom{100)}\underline{\phantom{}100\phantom{9}}\\\phantom{100)9}81\\\end{array}
Find closest multiple of 100 to 181. We see that 1 \times 100 = 100 is the nearest. Now subtract 100 from 181 to get reminder 81. Add 1 to quotient.
\begin{array}{l}\phantom{100)}001\phantom{7}\\100\overline{)1815}\\\phantom{100)}\underline{\phantom{}100\phantom{9}}\\\phantom{100)9}815\\\end{array}
Use the 4^{th} digit 5 from dividend 1815
\begin{array}{l}\phantom{100)}0018\phantom{8}\\100\overline{)1815}\\\phantom{100)}\underline{\phantom{}100\phantom{9}}\\\phantom{100)9}815\\\phantom{100)}\underline{\phantom{9}800\phantom{}}\\\phantom{100)99}15\\\end{array}
Find closest multiple of 100 to 815. We see that 8 \times 100 = 800 is the nearest. Now subtract 800 from 815 to get reminder 15. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }15
Since 15 is less than 100, stop the division. The reminder is 15. The topmost line 0018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}