Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)18078989}\\\end{array}
Use the 1^{st} digit 1 from dividend 18078989
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)18078989}\\\end{array}
Since 1 is less than 23, use the next digit 8 from dividend 18078989 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)18078989}\\\end{array}
Use the 2^{nd} digit 8 from dividend 18078989
\begin{array}{l}\phantom{23)}00\phantom{4}\\23\overline{)18078989}\\\end{array}
Since 18 is less than 23, use the next digit 0 from dividend 18078989 and add 0 to the quotient
\begin{array}{l}\phantom{23)}00\phantom{5}\\23\overline{)18078989}\\\end{array}
Use the 3^{rd} digit 0 from dividend 18078989
\begin{array}{l}\phantom{23)}007\phantom{6}\\23\overline{)18078989}\\\phantom{23)}\underline{\phantom{}161\phantom{99999}}\\\phantom{23)9}19\\\end{array}
Find closest multiple of 23 to 180. We see that 7 \times 23 = 161 is the nearest. Now subtract 161 from 180 to get reminder 19. Add 7 to quotient.
\begin{array}{l}\phantom{23)}007\phantom{7}\\23\overline{)18078989}\\\phantom{23)}\underline{\phantom{}161\phantom{99999}}\\\phantom{23)9}197\\\end{array}
Use the 4^{th} digit 7 from dividend 18078989
\begin{array}{l}\phantom{23)}0078\phantom{8}\\23\overline{)18078989}\\\phantom{23)}\underline{\phantom{}161\phantom{99999}}\\\phantom{23)9}197\\\phantom{23)}\underline{\phantom{9}184\phantom{9999}}\\\phantom{23)99}13\\\end{array}
Find closest multiple of 23 to 197. We see that 8 \times 23 = 184 is the nearest. Now subtract 184 from 197 to get reminder 13. Add 8 to quotient.
\begin{array}{l}\phantom{23)}0078\phantom{9}\\23\overline{)18078989}\\\phantom{23)}\underline{\phantom{}161\phantom{99999}}\\\phantom{23)9}197\\\phantom{23)}\underline{\phantom{9}184\phantom{9999}}\\\phantom{23)99}138\\\end{array}
Use the 5^{th} digit 8 from dividend 18078989
\begin{array}{l}\phantom{23)}00786\phantom{10}\\23\overline{)18078989}\\\phantom{23)}\underline{\phantom{}161\phantom{99999}}\\\phantom{23)9}197\\\phantom{23)}\underline{\phantom{9}184\phantom{9999}}\\\phantom{23)99}138\\\phantom{23)}\underline{\phantom{99}138\phantom{999}}\\\phantom{23)99999}0\\\end{array}
Find closest multiple of 23 to 138. We see that 6 \times 23 = 138 is the nearest. Now subtract 138 from 138 to get reminder 0. Add 6 to quotient.
\begin{array}{l}\phantom{23)}00786\phantom{11}\\23\overline{)18078989}\\\phantom{23)}\underline{\phantom{}161\phantom{99999}}\\\phantom{23)9}197\\\phantom{23)}\underline{\phantom{9}184\phantom{9999}}\\\phantom{23)99}138\\\phantom{23)}\underline{\phantom{99}138\phantom{999}}\\\phantom{23)99999}9\\\end{array}
Use the 6^{th} digit 9 from dividend 18078989
\begin{array}{l}\phantom{23)}007860\phantom{12}\\23\overline{)18078989}\\\phantom{23)}\underline{\phantom{}161\phantom{99999}}\\\phantom{23)9}197\\\phantom{23)}\underline{\phantom{9}184\phantom{9999}}\\\phantom{23)99}138\\\phantom{23)}\underline{\phantom{99}138\phantom{999}}\\\phantom{23)99999}9\\\end{array}
Since 9 is less than 23, use the next digit 8 from dividend 18078989 and add 0 to the quotient
\begin{array}{l}\phantom{23)}007860\phantom{13}\\23\overline{)18078989}\\\phantom{23)}\underline{\phantom{}161\phantom{99999}}\\\phantom{23)9}197\\\phantom{23)}\underline{\phantom{9}184\phantom{9999}}\\\phantom{23)99}138\\\phantom{23)}\underline{\phantom{99}138\phantom{999}}\\\phantom{23)99999}98\\\end{array}
Use the 7^{th} digit 8 from dividend 18078989
\begin{array}{l}\phantom{23)}0078604\phantom{14}\\23\overline{)18078989}\\\phantom{23)}\underline{\phantom{}161\phantom{99999}}\\\phantom{23)9}197\\\phantom{23)}\underline{\phantom{9}184\phantom{9999}}\\\phantom{23)99}138\\\phantom{23)}\underline{\phantom{99}138\phantom{999}}\\\phantom{23)99999}98\\\phantom{23)}\underline{\phantom{99999}92\phantom{9}}\\\phantom{23)999999}6\\\end{array}
Find closest multiple of 23 to 98. We see that 4 \times 23 = 92 is the nearest. Now subtract 92 from 98 to get reminder 6. Add 4 to quotient.
\begin{array}{l}\phantom{23)}0078604\phantom{15}\\23\overline{)18078989}\\\phantom{23)}\underline{\phantom{}161\phantom{99999}}\\\phantom{23)9}197\\\phantom{23)}\underline{\phantom{9}184\phantom{9999}}\\\phantom{23)99}138\\\phantom{23)}\underline{\phantom{99}138\phantom{999}}\\\phantom{23)99999}98\\\phantom{23)}\underline{\phantom{99999}92\phantom{9}}\\\phantom{23)999999}69\\\end{array}
Use the 8^{th} digit 9 from dividend 18078989
\begin{array}{l}\phantom{23)}00786043\phantom{16}\\23\overline{)18078989}\\\phantom{23)}\underline{\phantom{}161\phantom{99999}}\\\phantom{23)9}197\\\phantom{23)}\underline{\phantom{9}184\phantom{9999}}\\\phantom{23)99}138\\\phantom{23)}\underline{\phantom{99}138\phantom{999}}\\\phantom{23)99999}98\\\phantom{23)}\underline{\phantom{99999}92\phantom{9}}\\\phantom{23)999999}69\\\phantom{23)}\underline{\phantom{999999}69\phantom{}}\\\phantom{23)99999999}0\\\end{array}
Find closest multiple of 23 to 69. We see that 3 \times 23 = 69 is the nearest. Now subtract 69 from 69 to get reminder 0. Add 3 to quotient.
\text{Quotient: }786043 \text{Reminder: }0
Since 0 is less than 23, stop the division. The reminder is 0. The topmost line 00786043 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 786043.