Evaluate
\frac{36}{5}=7.2
Factor
\frac{2 ^ {2} \cdot 3 ^ {2}}{5} = 7\frac{1}{5} = 7.2
Share
Copied to clipboard
\begin{array}{l}\phantom{250000)}\phantom{1}\\250000\overline{)1800000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1800000
\begin{array}{l}\phantom{250000)}0\phantom{2}\\250000\overline{)1800000}\\\end{array}
Since 1 is less than 250000, use the next digit 8 from dividend 1800000 and add 0 to the quotient
\begin{array}{l}\phantom{250000)}0\phantom{3}\\250000\overline{)1800000}\\\end{array}
Use the 2^{nd} digit 8 from dividend 1800000
\begin{array}{l}\phantom{250000)}00\phantom{4}\\250000\overline{)1800000}\\\end{array}
Since 18 is less than 250000, use the next digit 0 from dividend 1800000 and add 0 to the quotient
\begin{array}{l}\phantom{250000)}00\phantom{5}\\250000\overline{)1800000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1800000
\begin{array}{l}\phantom{250000)}000\phantom{6}\\250000\overline{)1800000}\\\end{array}
Since 180 is less than 250000, use the next digit 0 from dividend 1800000 and add 0 to the quotient
\begin{array}{l}\phantom{250000)}000\phantom{7}\\250000\overline{)1800000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1800000
\begin{array}{l}\phantom{250000)}0000\phantom{8}\\250000\overline{)1800000}\\\end{array}
Since 1800 is less than 250000, use the next digit 0 from dividend 1800000 and add 0 to the quotient
\begin{array}{l}\phantom{250000)}0000\phantom{9}\\250000\overline{)1800000}\\\end{array}
Use the 5^{th} digit 0 from dividend 1800000
\begin{array}{l}\phantom{250000)}00000\phantom{10}\\250000\overline{)1800000}\\\end{array}
Since 18000 is less than 250000, use the next digit 0 from dividend 1800000 and add 0 to the quotient
\begin{array}{l}\phantom{250000)}00000\phantom{11}\\250000\overline{)1800000}\\\end{array}
Use the 6^{th} digit 0 from dividend 1800000
\begin{array}{l}\phantom{250000)}000000\phantom{12}\\250000\overline{)1800000}\\\end{array}
Since 180000 is less than 250000, use the next digit 0 from dividend 1800000 and add 0 to the quotient
\begin{array}{l}\phantom{250000)}000000\phantom{13}\\250000\overline{)1800000}\\\end{array}
Use the 7^{th} digit 0 from dividend 1800000
\begin{array}{l}\phantom{250000)}0000007\phantom{14}\\250000\overline{)1800000}\\\phantom{250000)}\underline{\phantom{}1750000\phantom{}}\\\phantom{250000)99}50000\\\end{array}
Find closest multiple of 250000 to 1800000. We see that 7 \times 250000 = 1750000 is the nearest. Now subtract 1750000 from 1800000 to get reminder 50000. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }50000
Since 50000 is less than 250000, stop the division. The reminder is 50000. The topmost line 0000007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}