Solve for q
q=-\sqrt{17465}i-1\approx -1-132.155211778i
q=-1+\sqrt{17465}i\approx -1+132.155211778i
Share
Copied to clipboard
-q^{2}-2q+534=18000
Swap sides so that all variable terms are on the left hand side.
-q^{2}-2q+534-18000=0
Subtract 18000 from both sides.
-q^{2}-2q-17466=0
Subtract 18000 from 534 to get -17466.
q=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\left(-17466\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and -17466 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\left(-17466\right)}}{2\left(-1\right)}
Square -2.
q=\frac{-\left(-2\right)±\sqrt{4+4\left(-17466\right)}}{2\left(-1\right)}
Multiply -4 times -1.
q=\frac{-\left(-2\right)±\sqrt{4-69864}}{2\left(-1\right)}
Multiply 4 times -17466.
q=\frac{-\left(-2\right)±\sqrt{-69860}}{2\left(-1\right)}
Add 4 to -69864.
q=\frac{-\left(-2\right)±2\sqrt{17465}i}{2\left(-1\right)}
Take the square root of -69860.
q=\frac{2±2\sqrt{17465}i}{2\left(-1\right)}
The opposite of -2 is 2.
q=\frac{2±2\sqrt{17465}i}{-2}
Multiply 2 times -1.
q=\frac{2+2\sqrt{17465}i}{-2}
Now solve the equation q=\frac{2±2\sqrt{17465}i}{-2} when ± is plus. Add 2 to 2i\sqrt{17465}.
q=-\sqrt{17465}i-1
Divide 2+2i\sqrt{17465} by -2.
q=\frac{-2\sqrt{17465}i+2}{-2}
Now solve the equation q=\frac{2±2\sqrt{17465}i}{-2} when ± is minus. Subtract 2i\sqrt{17465} from 2.
q=-1+\sqrt{17465}i
Divide 2-2i\sqrt{17465} by -2.
q=-\sqrt{17465}i-1 q=-1+\sqrt{17465}i
The equation is now solved.
-q^{2}-2q+534=18000
Swap sides so that all variable terms are on the left hand side.
-q^{2}-2q=18000-534
Subtract 534 from both sides.
-q^{2}-2q=17466
Subtract 534 from 18000 to get 17466.
\frac{-q^{2}-2q}{-1}=\frac{17466}{-1}
Divide both sides by -1.
q^{2}+\left(-\frac{2}{-1}\right)q=\frac{17466}{-1}
Dividing by -1 undoes the multiplication by -1.
q^{2}+2q=\frac{17466}{-1}
Divide -2 by -1.
q^{2}+2q=-17466
Divide 17466 by -1.
q^{2}+2q+1^{2}=-17466+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}+2q+1=-17466+1
Square 1.
q^{2}+2q+1=-17465
Add -17466 to 1.
\left(q+1\right)^{2}=-17465
Factor q^{2}+2q+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q+1\right)^{2}}=\sqrt{-17465}
Take the square root of both sides of the equation.
q+1=\sqrt{17465}i q+1=-\sqrt{17465}i
Simplify.
q=-1+\sqrt{17465}i q=-\sqrt{17465}i-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}