Evaluate
\frac{1800}{587}\approx 3.066439523
Factor
\frac{2 ^ {3} \cdot 3 ^ {2} \cdot 5 ^ {2}}{587} = 3\frac{39}{587} = 3.0664395229982966
Share
Copied to clipboard
\begin{array}{l}\phantom{587)}\phantom{1}\\587\overline{)1800}\\\end{array}
Use the 1^{st} digit 1 from dividend 1800
\begin{array}{l}\phantom{587)}0\phantom{2}\\587\overline{)1800}\\\end{array}
Since 1 is less than 587, use the next digit 8 from dividend 1800 and add 0 to the quotient
\begin{array}{l}\phantom{587)}0\phantom{3}\\587\overline{)1800}\\\end{array}
Use the 2^{nd} digit 8 from dividend 1800
\begin{array}{l}\phantom{587)}00\phantom{4}\\587\overline{)1800}\\\end{array}
Since 18 is less than 587, use the next digit 0 from dividend 1800 and add 0 to the quotient
\begin{array}{l}\phantom{587)}00\phantom{5}\\587\overline{)1800}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1800
\begin{array}{l}\phantom{587)}000\phantom{6}\\587\overline{)1800}\\\end{array}
Since 180 is less than 587, use the next digit 0 from dividend 1800 and add 0 to the quotient
\begin{array}{l}\phantom{587)}000\phantom{7}\\587\overline{)1800}\\\end{array}
Use the 4^{th} digit 0 from dividend 1800
\begin{array}{l}\phantom{587)}0003\phantom{8}\\587\overline{)1800}\\\phantom{587)}\underline{\phantom{}1761\phantom{}}\\\phantom{587)99}39\\\end{array}
Find closest multiple of 587 to 1800. We see that 3 \times 587 = 1761 is the nearest. Now subtract 1761 from 1800 to get reminder 39. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }39
Since 39 is less than 587, stop the division. The reminder is 39. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}