Solve for x
x=2
x=0
Graph
Share
Copied to clipboard
3600\left(30+7x\right)\left(1.8-\frac{x}{10}\right)+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Multiply both sides of the equation by 20, the least common multiple of 10,20.
\left(108000+25200x\right)\left(1.8-\frac{x}{10}\right)+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Use the distributive property to multiply 3600 by 30+7x.
194400+108000\left(-\frac{x}{10}\right)+45360x+25200x\left(-\frac{x}{10}\right)+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Apply the distributive property by multiplying each term of 108000+25200x by each term of 1.8-\frac{x}{10}.
194400-10800x+45360x+25200x\left(-\frac{x}{10}\right)+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Cancel out 10, the greatest common factor in 108000 and 10.
194400+34560x+25200x\left(-\frac{x}{10}\right)+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Combine -10800x and 45360x to get 34560x.
194400+34560x-2520xx+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Cancel out 10, the greatest common factor in 25200 and 10.
194400+34560x-2520x^{2}+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Multiply x and x to get x^{2}.
194400+34560x-2520x^{2}+\left(3600+2400\left(-\frac{x}{20}\right)\right)\left(50-7x\right)=374400
Use the distributive property to multiply 2400 by 1.5-\frac{x}{20}.
194400+34560x-2520x^{2}+\left(3600-120x\right)\left(50-7x\right)=374400
Cancel out 20, the greatest common factor in 2400 and 20.
194400+34560x-2520x^{2}+180000-25200x-6000x+840x^{2}=374400
Apply the distributive property by multiplying each term of 3600-120x by each term of 50-7x.
194400+34560x-2520x^{2}+180000-31200x+840x^{2}=374400
Combine -25200x and -6000x to get -31200x.
374400+34560x-2520x^{2}-31200x+840x^{2}=374400
Add 194400 and 180000 to get 374400.
374400+3360x-2520x^{2}+840x^{2}=374400
Combine 34560x and -31200x to get 3360x.
374400+3360x-1680x^{2}=374400
Combine -2520x^{2} and 840x^{2} to get -1680x^{2}.
374400+3360x-1680x^{2}-374400=0
Subtract 374400 from both sides.
3360x-1680x^{2}=0
Subtract 374400 from 374400 to get 0.
-1680x^{2}+3360x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3360±\sqrt{3360^{2}}}{2\left(-1680\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1680 for a, 3360 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3360±3360}{2\left(-1680\right)}
Take the square root of 3360^{2}.
x=\frac{-3360±3360}{-3360}
Multiply 2 times -1680.
x=\frac{0}{-3360}
Now solve the equation x=\frac{-3360±3360}{-3360} when ± is plus. Add -3360 to 3360.
x=0
Divide 0 by -3360.
x=-\frac{6720}{-3360}
Now solve the equation x=\frac{-3360±3360}{-3360} when ± is minus. Subtract 3360 from -3360.
x=2
Divide -6720 by -3360.
x=0 x=2
The equation is now solved.
3600\left(30+7x\right)\left(1.8-\frac{x}{10}\right)+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Multiply both sides of the equation by 20, the least common multiple of 10,20.
\left(108000+25200x\right)\left(1.8-\frac{x}{10}\right)+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Use the distributive property to multiply 3600 by 30+7x.
194400+108000\left(-\frac{x}{10}\right)+45360x+25200x\left(-\frac{x}{10}\right)+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Apply the distributive property by multiplying each term of 108000+25200x by each term of 1.8-\frac{x}{10}.
194400-10800x+45360x+25200x\left(-\frac{x}{10}\right)+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Cancel out 10, the greatest common factor in 108000 and 10.
194400+34560x+25200x\left(-\frac{x}{10}\right)+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Combine -10800x and 45360x to get 34560x.
194400+34560x-2520xx+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Cancel out 10, the greatest common factor in 25200 and 10.
194400+34560x-2520x^{2}+2400\left(1.5-\frac{x}{20}\right)\left(50-7x\right)=374400
Multiply x and x to get x^{2}.
194400+34560x-2520x^{2}+\left(3600+2400\left(-\frac{x}{20}\right)\right)\left(50-7x\right)=374400
Use the distributive property to multiply 2400 by 1.5-\frac{x}{20}.
194400+34560x-2520x^{2}+\left(3600-120x\right)\left(50-7x\right)=374400
Cancel out 20, the greatest common factor in 2400 and 20.
194400+34560x-2520x^{2}+180000-25200x-6000x+840x^{2}=374400
Apply the distributive property by multiplying each term of 3600-120x by each term of 50-7x.
194400+34560x-2520x^{2}+180000-31200x+840x^{2}=374400
Combine -25200x and -6000x to get -31200x.
374400+34560x-2520x^{2}-31200x+840x^{2}=374400
Add 194400 and 180000 to get 374400.
374400+3360x-2520x^{2}+840x^{2}=374400
Combine 34560x and -31200x to get 3360x.
374400+3360x-1680x^{2}=374400
Combine -2520x^{2} and 840x^{2} to get -1680x^{2}.
3360x-1680x^{2}=374400-374400
Subtract 374400 from both sides.
3360x-1680x^{2}=0
Subtract 374400 from 374400 to get 0.
-1680x^{2}+3360x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-1680x^{2}+3360x}{-1680}=\frac{0}{-1680}
Divide both sides by -1680.
x^{2}+\frac{3360}{-1680}x=\frac{0}{-1680}
Dividing by -1680 undoes the multiplication by -1680.
x^{2}-2x=\frac{0}{-1680}
Divide 3360 by -1680.
x^{2}-2x=0
Divide 0 by -1680.
x^{2}-2x+1=1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\left(x-1\right)^{2}=1
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-1=1 x-1=-1
Simplify.
x=2 x=0
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}