Solve for x
x\leq \frac{333}{34}
Graph
Share
Copied to clipboard
180x+240\times \frac{2}{3}x-1200\leq 2130
Use the distributive property to multiply 240 by \frac{2}{3}x-5.
180x+\frac{240\times 2}{3}x-1200\leq 2130
Express 240\times \frac{2}{3} as a single fraction.
180x+\frac{480}{3}x-1200\leq 2130
Multiply 240 and 2 to get 480.
180x+160x-1200\leq 2130
Divide 480 by 3 to get 160.
340x-1200\leq 2130
Combine 180x and 160x to get 340x.
340x\leq 2130+1200
Add 1200 to both sides.
340x\leq 3330
Add 2130 and 1200 to get 3330.
x\leq \frac{3330}{340}
Divide both sides by 340. Since 340 is positive, the inequality direction remains the same.
x\leq \frac{333}{34}
Reduce the fraction \frac{3330}{340} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}