Evaluate
\frac{15697}{90}\approx 174.411111111
Factor
\frac{11 \cdot 1427}{2 \cdot 3 ^ {2} \cdot 5} = 174\frac{37}{90} = 174.4111111111111
Share
Copied to clipboard
180-\frac{15+1}{5}-\left(\frac{2\times 3+1}{3}+\frac{1}{6}-\frac{1}{9}\right)
Multiply 3 and 5 to get 15.
180-\frac{16}{5}-\left(\frac{2\times 3+1}{3}+\frac{1}{6}-\frac{1}{9}\right)
Add 15 and 1 to get 16.
\frac{900}{5}-\frac{16}{5}-\left(\frac{2\times 3+1}{3}+\frac{1}{6}-\frac{1}{9}\right)
Convert 180 to fraction \frac{900}{5}.
\frac{900-16}{5}-\left(\frac{2\times 3+1}{3}+\frac{1}{6}-\frac{1}{9}\right)
Since \frac{900}{5} and \frac{16}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{884}{5}-\left(\frac{2\times 3+1}{3}+\frac{1}{6}-\frac{1}{9}\right)
Subtract 16 from 900 to get 884.
\frac{884}{5}-\left(\frac{6+1}{3}+\frac{1}{6}-\frac{1}{9}\right)
Multiply 2 and 3 to get 6.
\frac{884}{5}-\left(\frac{7}{3}+\frac{1}{6}-\frac{1}{9}\right)
Add 6 and 1 to get 7.
\frac{884}{5}-\left(\frac{14}{6}+\frac{1}{6}-\frac{1}{9}\right)
Least common multiple of 3 and 6 is 6. Convert \frac{7}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{884}{5}-\left(\frac{14+1}{6}-\frac{1}{9}\right)
Since \frac{14}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{884}{5}-\left(\frac{15}{6}-\frac{1}{9}\right)
Add 14 and 1 to get 15.
\frac{884}{5}-\left(\frac{5}{2}-\frac{1}{9}\right)
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
\frac{884}{5}-\left(\frac{45}{18}-\frac{2}{18}\right)
Least common multiple of 2 and 9 is 18. Convert \frac{5}{2} and \frac{1}{9} to fractions with denominator 18.
\frac{884}{5}-\frac{45-2}{18}
Since \frac{45}{18} and \frac{2}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{884}{5}-\frac{43}{18}
Subtract 2 from 45 to get 43.
\frac{15912}{90}-\frac{215}{90}
Least common multiple of 5 and 18 is 90. Convert \frac{884}{5} and \frac{43}{18} to fractions with denominator 90.
\frac{15912-215}{90}
Since \frac{15912}{90} and \frac{215}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{15697}{90}
Subtract 215 from 15912 to get 15697.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}