Solve for x
x=\sqrt{2}+2\approx 3.414213562
x=2-\sqrt{2}\approx 0.585786438
Graph
Share
Copied to clipboard
180\left(x-2\right)x-180\left(x-2\right)=180x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\left(180x-360\right)x-180\left(x-2\right)=180x
Use the distributive property to multiply 180 by x-2.
180x^{2}-360x-180\left(x-2\right)=180x
Use the distributive property to multiply 180x-360 by x.
180x^{2}-360x-180x+360=180x
Use the distributive property to multiply -180 by x-2.
180x^{2}-540x+360=180x
Combine -360x and -180x to get -540x.
180x^{2}-540x+360-180x=0
Subtract 180x from both sides.
180x^{2}-720x+360=0
Combine -540x and -180x to get -720x.
x=\frac{-\left(-720\right)±\sqrt{\left(-720\right)^{2}-4\times 180\times 360}}{2\times 180}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 180 for a, -720 for b, and 360 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-720\right)±\sqrt{518400-4\times 180\times 360}}{2\times 180}
Square -720.
x=\frac{-\left(-720\right)±\sqrt{518400-720\times 360}}{2\times 180}
Multiply -4 times 180.
x=\frac{-\left(-720\right)±\sqrt{518400-259200}}{2\times 180}
Multiply -720 times 360.
x=\frac{-\left(-720\right)±\sqrt{259200}}{2\times 180}
Add 518400 to -259200.
x=\frac{-\left(-720\right)±360\sqrt{2}}{2\times 180}
Take the square root of 259200.
x=\frac{720±360\sqrt{2}}{2\times 180}
The opposite of -720 is 720.
x=\frac{720±360\sqrt{2}}{360}
Multiply 2 times 180.
x=\frac{360\sqrt{2}+720}{360}
Now solve the equation x=\frac{720±360\sqrt{2}}{360} when ± is plus. Add 720 to 360\sqrt{2}.
x=\sqrt{2}+2
Divide 720+360\sqrt{2} by 360.
x=\frac{720-360\sqrt{2}}{360}
Now solve the equation x=\frac{720±360\sqrt{2}}{360} when ± is minus. Subtract 360\sqrt{2} from 720.
x=2-\sqrt{2}
Divide 720-360\sqrt{2} by 360.
x=\sqrt{2}+2 x=2-\sqrt{2}
The equation is now solved.
180\left(x-2\right)x-180\left(x-2\right)=180x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\left(180x-360\right)x-180\left(x-2\right)=180x
Use the distributive property to multiply 180 by x-2.
180x^{2}-360x-180\left(x-2\right)=180x
Use the distributive property to multiply 180x-360 by x.
180x^{2}-360x-180x+360=180x
Use the distributive property to multiply -180 by x-2.
180x^{2}-540x+360=180x
Combine -360x and -180x to get -540x.
180x^{2}-540x+360-180x=0
Subtract 180x from both sides.
180x^{2}-720x+360=0
Combine -540x and -180x to get -720x.
180x^{2}-720x=-360
Subtract 360 from both sides. Anything subtracted from zero gives its negation.
\frac{180x^{2}-720x}{180}=-\frac{360}{180}
Divide both sides by 180.
x^{2}+\left(-\frac{720}{180}\right)x=-\frac{360}{180}
Dividing by 180 undoes the multiplication by 180.
x^{2}-4x=-\frac{360}{180}
Divide -720 by 180.
x^{2}-4x=-2
Divide -360 by 180.
x^{2}-4x+\left(-2\right)^{2}=-2+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-2+4
Square -2.
x^{2}-4x+4=2
Add -2 to 4.
\left(x-2\right)^{2}=2
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x-2=\sqrt{2} x-2=-\sqrt{2}
Simplify.
x=\sqrt{2}+2 x=2-\sqrt{2}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}