Evaluate
\frac{36}{7}\approx 5.142857143
Factor
\frac{2 ^ {2} \cdot 3 ^ {2}}{7} = 5\frac{1}{7} = 5.142857142857143
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)180}\\\end{array}
Use the 1^{st} digit 1 from dividend 180
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)180}\\\end{array}
Since 1 is less than 35, use the next digit 8 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)180}\\\end{array}
Use the 2^{nd} digit 8 from dividend 180
\begin{array}{l}\phantom{35)}00\phantom{4}\\35\overline{)180}\\\end{array}
Since 18 is less than 35, use the next digit 0 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{35)}00\phantom{5}\\35\overline{)180}\\\end{array}
Use the 3^{rd} digit 0 from dividend 180
\begin{array}{l}\phantom{35)}005\phantom{6}\\35\overline{)180}\\\phantom{35)}\underline{\phantom{}175\phantom{}}\\\phantom{35)99}5\\\end{array}
Find closest multiple of 35 to 180. We see that 5 \times 35 = 175 is the nearest. Now subtract 175 from 180 to get reminder 5. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }5
Since 5 is less than 35, stop the division. The reminder is 5. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}