Evaluate
\frac{180}{119}\approx 1.512605042
Factor
\frac{2 ^ {2} \cdot 3 ^ {2} \cdot 5}{7 \cdot 17} = 1\frac{61}{119} = 1.5126050420168067
Share
Copied to clipboard
\begin{array}{l}\phantom{119)}\phantom{1}\\119\overline{)180}\\\end{array}
Use the 1^{st} digit 1 from dividend 180
\begin{array}{l}\phantom{119)}0\phantom{2}\\119\overline{)180}\\\end{array}
Since 1 is less than 119, use the next digit 8 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{119)}0\phantom{3}\\119\overline{)180}\\\end{array}
Use the 2^{nd} digit 8 from dividend 180
\begin{array}{l}\phantom{119)}00\phantom{4}\\119\overline{)180}\\\end{array}
Since 18 is less than 119, use the next digit 0 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{119)}00\phantom{5}\\119\overline{)180}\\\end{array}
Use the 3^{rd} digit 0 from dividend 180
\begin{array}{l}\phantom{119)}001\phantom{6}\\119\overline{)180}\\\phantom{119)}\underline{\phantom{}119\phantom{}}\\\phantom{119)9}61\\\end{array}
Find closest multiple of 119 to 180. We see that 1 \times 119 = 119 is the nearest. Now subtract 119 from 180 to get reminder 61. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }61
Since 61 is less than 119, stop the division. The reminder is 61. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}