180 \%
Evaluate
\frac{9}{5}=1.8
Factor
\frac{3 ^ {2}}{5} = 1\frac{4}{5} = 1.8
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)180}\\\end{array}
Use the 1^{st} digit 1 from dividend 180
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)180}\\\end{array}
Since 1 is less than 100, use the next digit 8 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)180}\\\end{array}
Use the 2^{nd} digit 8 from dividend 180
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)180}\\\end{array}
Since 18 is less than 100, use the next digit 0 from dividend 180 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)180}\\\end{array}
Use the 3^{rd} digit 0 from dividend 180
\begin{array}{l}\phantom{100)}001\phantom{6}\\100\overline{)180}\\\phantom{100)}\underline{\phantom{}100\phantom{}}\\\phantom{100)9}80\\\end{array}
Find closest multiple of 100 to 180. We see that 1 \times 100 = 100 is the nearest. Now subtract 100 from 180 to get reminder 80. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }80
Since 80 is less than 100, stop the division. The reminder is 80. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}