Solve for t
t=6
t=-6
Share
Copied to clipboard
180=5t^{2}
Multiply \frac{1}{2} and 10 to get 5.
5t^{2}=180
Swap sides so that all variable terms are on the left hand side.
5t^{2}-180=0
Subtract 180 from both sides.
t^{2}-36=0
Divide both sides by 5.
\left(t-6\right)\left(t+6\right)=0
Consider t^{2}-36. Rewrite t^{2}-36 as t^{2}-6^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=6 t=-6
To find equation solutions, solve t-6=0 and t+6=0.
180=5t^{2}
Multiply \frac{1}{2} and 10 to get 5.
5t^{2}=180
Swap sides so that all variable terms are on the left hand side.
t^{2}=\frac{180}{5}
Divide both sides by 5.
t^{2}=36
Divide 180 by 5 to get 36.
t=6 t=-6
Take the square root of both sides of the equation.
180=5t^{2}
Multiply \frac{1}{2} and 10 to get 5.
5t^{2}=180
Swap sides so that all variable terms are on the left hand side.
5t^{2}-180=0
Subtract 180 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times 5\left(-180\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -180 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 5\left(-180\right)}}{2\times 5}
Square 0.
t=\frac{0±\sqrt{-20\left(-180\right)}}{2\times 5}
Multiply -4 times 5.
t=\frac{0±\sqrt{3600}}{2\times 5}
Multiply -20 times -180.
t=\frac{0±60}{2\times 5}
Take the square root of 3600.
t=\frac{0±60}{10}
Multiply 2 times 5.
t=6
Now solve the equation t=\frac{0±60}{10} when ± is plus. Divide 60 by 10.
t=-6
Now solve the equation t=\frac{0±60}{10} when ± is minus. Divide -60 by 10.
t=6 t=-6
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}