Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

180=5t^{2}
Multiply \frac{1}{2} and 10 to get 5.
5t^{2}=180
Swap sides so that all variable terms are on the left hand side.
5t^{2}-180=0
Subtract 180 from both sides.
t^{2}-36=0
Divide both sides by 5.
\left(t-6\right)\left(t+6\right)=0
Consider t^{2}-36. Rewrite t^{2}-36 as t^{2}-6^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=6 t=-6
To find equation solutions, solve t-6=0 and t+6=0.
180=5t^{2}
Multiply \frac{1}{2} and 10 to get 5.
5t^{2}=180
Swap sides so that all variable terms are on the left hand side.
t^{2}=\frac{180}{5}
Divide both sides by 5.
t^{2}=36
Divide 180 by 5 to get 36.
t=6 t=-6
Take the square root of both sides of the equation.
180=5t^{2}
Multiply \frac{1}{2} and 10 to get 5.
5t^{2}=180
Swap sides so that all variable terms are on the left hand side.
5t^{2}-180=0
Subtract 180 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times 5\left(-180\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -180 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 5\left(-180\right)}}{2\times 5}
Square 0.
t=\frac{0±\sqrt{-20\left(-180\right)}}{2\times 5}
Multiply -4 times 5.
t=\frac{0±\sqrt{3600}}{2\times 5}
Multiply -20 times -180.
t=\frac{0±60}{2\times 5}
Take the square root of 3600.
t=\frac{0±60}{10}
Multiply 2 times 5.
t=6
Now solve the equation t=\frac{0±60}{10} when ± is plus. Divide 60 by 10.
t=-6
Now solve the equation t=\frac{0±60}{10} when ± is minus. Divide -60 by 10.
t=6 t=-6
The equation is now solved.