Solve for d
d=-\frac{x}{3}-\frac{\theta }{3}+60
Solve for x
x=180-\theta -3d
Graph
Share
Copied to clipboard
x+3d+\theta =180
Swap sides so that all variable terms are on the left hand side.
3d+\theta =180-x
Subtract x from both sides.
3d=180-x-\theta
Subtract \theta from both sides.
3d=180-\theta -x
The equation is in standard form.
\frac{3d}{3}=\frac{180-\theta -x}{3}
Divide both sides by 3.
d=\frac{180-\theta -x}{3}
Dividing by 3 undoes the multiplication by 3.
d=-\frac{x}{3}-\frac{\theta }{3}+60
Divide 180-x-\theta by 3.
x+3d+\theta =180
Swap sides so that all variable terms are on the left hand side.
x+\theta =180-3d
Subtract 3d from both sides.
x=180-3d-\theta
Subtract \theta from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}