Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18+18x+4x^{2}=31
Combine 12x and 6x to get 18x.
18+18x+4x^{2}-31=0
Subtract 31 from both sides.
-13+18x+4x^{2}=0
Subtract 31 from 18 to get -13.
4x^{2}+18x-13=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{18^{2}-4\times 4\left(-13\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 18 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 4\left(-13\right)}}{2\times 4}
Square 18.
x=\frac{-18±\sqrt{324-16\left(-13\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-18±\sqrt{324+208}}{2\times 4}
Multiply -16 times -13.
x=\frac{-18±\sqrt{532}}{2\times 4}
Add 324 to 208.
x=\frac{-18±2\sqrt{133}}{2\times 4}
Take the square root of 532.
x=\frac{-18±2\sqrt{133}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{133}-18}{8}
Now solve the equation x=\frac{-18±2\sqrt{133}}{8} when ± is plus. Add -18 to 2\sqrt{133}.
x=\frac{\sqrt{133}-9}{4}
Divide -18+2\sqrt{133} by 8.
x=\frac{-2\sqrt{133}-18}{8}
Now solve the equation x=\frac{-18±2\sqrt{133}}{8} when ± is minus. Subtract 2\sqrt{133} from -18.
x=\frac{-\sqrt{133}-9}{4}
Divide -18-2\sqrt{133} by 8.
x=\frac{\sqrt{133}-9}{4} x=\frac{-\sqrt{133}-9}{4}
The equation is now solved.
18+18x+4x^{2}=31
Combine 12x and 6x to get 18x.
18x+4x^{2}=31-18
Subtract 18 from both sides.
18x+4x^{2}=13
Subtract 18 from 31 to get 13.
4x^{2}+18x=13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+18x}{4}=\frac{13}{4}
Divide both sides by 4.
x^{2}+\frac{18}{4}x=\frac{13}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{9}{2}x=\frac{13}{4}
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=\frac{13}{4}+\left(\frac{9}{4}\right)^{2}
Divide \frac{9}{2}, the coefficient of the x term, by 2 to get \frac{9}{4}. Then add the square of \frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{13}{4}+\frac{81}{16}
Square \frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{133}{16}
Add \frac{13}{4} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{9}{4}\right)^{2}=\frac{133}{16}
Factor x^{2}+\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{\frac{133}{16}}
Take the square root of both sides of the equation.
x+\frac{9}{4}=\frac{\sqrt{133}}{4} x+\frac{9}{4}=-\frac{\sqrt{133}}{4}
Simplify.
x=\frac{\sqrt{133}-9}{4} x=\frac{-\sqrt{133}-9}{4}
Subtract \frac{9}{4} from both sides of the equation.