Factor
3\left(2-z\right)\left(z-4\right)
Evaluate
3\left(2-z\right)\left(z-4\right)
Share
Copied to clipboard
3\left(6z-8-z^{2}\right)
Factor out 3.
-z^{2}+6z-8
Consider 6z-8-z^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=6 ab=-\left(-8\right)=8
Factor the expression by grouping. First, the expression needs to be rewritten as -z^{2}+az+bz-8. To find a and b, set up a system to be solved.
1,8 2,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 8.
1+8=9 2+4=6
Calculate the sum for each pair.
a=4 b=2
The solution is the pair that gives sum 6.
\left(-z^{2}+4z\right)+\left(2z-8\right)
Rewrite -z^{2}+6z-8 as \left(-z^{2}+4z\right)+\left(2z-8\right).
-z\left(z-4\right)+2\left(z-4\right)
Factor out -z in the first and 2 in the second group.
\left(z-4\right)\left(-z+2\right)
Factor out common term z-4 by using distributive property.
3\left(z-4\right)\left(-z+2\right)
Rewrite the complete factored expression.
-3z^{2}+18z-24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-18±\sqrt{18^{2}-4\left(-3\right)\left(-24\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-18±\sqrt{324-4\left(-3\right)\left(-24\right)}}{2\left(-3\right)}
Square 18.
z=\frac{-18±\sqrt{324+12\left(-24\right)}}{2\left(-3\right)}
Multiply -4 times -3.
z=\frac{-18±\sqrt{324-288}}{2\left(-3\right)}
Multiply 12 times -24.
z=\frac{-18±\sqrt{36}}{2\left(-3\right)}
Add 324 to -288.
z=\frac{-18±6}{2\left(-3\right)}
Take the square root of 36.
z=\frac{-18±6}{-6}
Multiply 2 times -3.
z=-\frac{12}{-6}
Now solve the equation z=\frac{-18±6}{-6} when ± is plus. Add -18 to 6.
z=2
Divide -12 by -6.
z=-\frac{24}{-6}
Now solve the equation z=\frac{-18±6}{-6} when ± is minus. Subtract 6 from -18.
z=4
Divide -24 by -6.
-3z^{2}+18z-24=-3\left(z-2\right)\left(z-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and 4 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}