Solve for y
y=\frac{18x^{2}}{5}+\frac{24x}{5}-\frac{12}{5x}
x\neq 0
Graph
Share
Copied to clipboard
24x^{2}-5xy-4=8-18x^{3}
Subtract 18x^{3} from both sides.
-5xy-4=8-18x^{3}-24x^{2}
Subtract 24x^{2} from both sides.
-5xy=8-18x^{3}-24x^{2}+4
Add 4 to both sides.
-5xy=12-18x^{3}-24x^{2}
Add 8 and 4 to get 12.
\left(-5x\right)y=12-24x^{2}-18x^{3}
The equation is in standard form.
\frac{\left(-5x\right)y}{-5x}=\frac{12-24x^{2}-18x^{3}}{-5x}
Divide both sides by -5x.
y=\frac{12-24x^{2}-18x^{3}}{-5x}
Dividing by -5x undoes the multiplication by -5x.
y=\frac{18x^{2}}{5}+\frac{24x}{5}-\frac{12}{5x}
Divide 12-18x^{3}-24x^{2} by -5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}