Factor
\left(3x-5\right)\left(6x+1\right)
Evaluate
\left(3x-5\right)\left(6x+1\right)
Graph
Share
Copied to clipboard
a+b=-27 ab=18\left(-5\right)=-90
Factor the expression by grouping. First, the expression needs to be rewritten as 18x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Calculate the sum for each pair.
a=-30 b=3
The solution is the pair that gives sum -27.
\left(18x^{2}-30x\right)+\left(3x-5\right)
Rewrite 18x^{2}-27x-5 as \left(18x^{2}-30x\right)+\left(3x-5\right).
6x\left(3x-5\right)+3x-5
Factor out 6x in 18x^{2}-30x.
\left(3x-5\right)\left(6x+1\right)
Factor out common term 3x-5 by using distributive property.
18x^{2}-27x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 18\left(-5\right)}}{2\times 18}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-27\right)±\sqrt{729-4\times 18\left(-5\right)}}{2\times 18}
Square -27.
x=\frac{-\left(-27\right)±\sqrt{729-72\left(-5\right)}}{2\times 18}
Multiply -4 times 18.
x=\frac{-\left(-27\right)±\sqrt{729+360}}{2\times 18}
Multiply -72 times -5.
x=\frac{-\left(-27\right)±\sqrt{1089}}{2\times 18}
Add 729 to 360.
x=\frac{-\left(-27\right)±33}{2\times 18}
Take the square root of 1089.
x=\frac{27±33}{2\times 18}
The opposite of -27 is 27.
x=\frac{27±33}{36}
Multiply 2 times 18.
x=\frac{60}{36}
Now solve the equation x=\frac{27±33}{36} when ± is plus. Add 27 to 33.
x=\frac{5}{3}
Reduce the fraction \frac{60}{36} to lowest terms by extracting and canceling out 12.
x=-\frac{6}{36}
Now solve the equation x=\frac{27±33}{36} when ± is minus. Subtract 33 from 27.
x=-\frac{1}{6}
Reduce the fraction \frac{-6}{36} to lowest terms by extracting and canceling out 6.
18x^{2}-27x-5=18\left(x-\frac{5}{3}\right)\left(x-\left(-\frac{1}{6}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{3} for x_{1} and -\frac{1}{6} for x_{2}.
18x^{2}-27x-5=18\left(x-\frac{5}{3}\right)\left(x+\frac{1}{6}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
18x^{2}-27x-5=18\times \frac{3x-5}{3}\left(x+\frac{1}{6}\right)
Subtract \frac{5}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
18x^{2}-27x-5=18\times \frac{3x-5}{3}\times \frac{6x+1}{6}
Add \frac{1}{6} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
18x^{2}-27x-5=18\times \frac{\left(3x-5\right)\left(6x+1\right)}{3\times 6}
Multiply \frac{3x-5}{3} times \frac{6x+1}{6} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
18x^{2}-27x-5=18\times \frac{\left(3x-5\right)\left(6x+1\right)}{18}
Multiply 3 times 6.
18x^{2}-27x-5=\left(3x-5\right)\left(6x+1\right)
Cancel out 18, the greatest common factor in 18 and 18.
x ^ 2 -\frac{3}{2}x -\frac{5}{18} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 18
r + s = \frac{3}{2} rs = -\frac{5}{18}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{4} - u s = \frac{3}{4} + u
Two numbers r and s sum up to \frac{3}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{3}{2} = \frac{3}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{4} - u) (\frac{3}{4} + u) = -\frac{5}{18}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{18}
\frac{9}{16} - u^2 = -\frac{5}{18}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{18}-\frac{9}{16} = -\frac{121}{144}
Simplify the expression by subtracting \frac{9}{16} on both sides
u^2 = \frac{121}{144} u = \pm\sqrt{\frac{121}{144}} = \pm \frac{11}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{4} - \frac{11}{12} = -0.167 s = \frac{3}{4} + \frac{11}{12} = 1.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}