Factor
\left(2x+3\right)\left(9x+7\right)
Evaluate
\left(2x+3\right)\left(9x+7\right)
Graph
Share
Copied to clipboard
a+b=41 ab=18\times 21=378
Factor the expression by grouping. First, the expression needs to be rewritten as 18x^{2}+ax+bx+21. To find a and b, set up a system to be solved.
1,378 2,189 3,126 6,63 7,54 9,42 14,27 18,21
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 378.
1+378=379 2+189=191 3+126=129 6+63=69 7+54=61 9+42=51 14+27=41 18+21=39
Calculate the sum for each pair.
a=14 b=27
The solution is the pair that gives sum 41.
\left(18x^{2}+14x\right)+\left(27x+21\right)
Rewrite 18x^{2}+41x+21 as \left(18x^{2}+14x\right)+\left(27x+21\right).
2x\left(9x+7\right)+3\left(9x+7\right)
Factor out 2x in the first and 3 in the second group.
\left(9x+7\right)\left(2x+3\right)
Factor out common term 9x+7 by using distributive property.
18x^{2}+41x+21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-41±\sqrt{41^{2}-4\times 18\times 21}}{2\times 18}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-41±\sqrt{1681-4\times 18\times 21}}{2\times 18}
Square 41.
x=\frac{-41±\sqrt{1681-72\times 21}}{2\times 18}
Multiply -4 times 18.
x=\frac{-41±\sqrt{1681-1512}}{2\times 18}
Multiply -72 times 21.
x=\frac{-41±\sqrt{169}}{2\times 18}
Add 1681 to -1512.
x=\frac{-41±13}{2\times 18}
Take the square root of 169.
x=\frac{-41±13}{36}
Multiply 2 times 18.
x=-\frac{28}{36}
Now solve the equation x=\frac{-41±13}{36} when ± is plus. Add -41 to 13.
x=-\frac{7}{9}
Reduce the fraction \frac{-28}{36} to lowest terms by extracting and canceling out 4.
x=-\frac{54}{36}
Now solve the equation x=\frac{-41±13}{36} when ± is minus. Subtract 13 from -41.
x=-\frac{3}{2}
Reduce the fraction \frac{-54}{36} to lowest terms by extracting and canceling out 18.
18x^{2}+41x+21=18\left(x-\left(-\frac{7}{9}\right)\right)\left(x-\left(-\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{7}{9} for x_{1} and -\frac{3}{2} for x_{2}.
18x^{2}+41x+21=18\left(x+\frac{7}{9}\right)\left(x+\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
18x^{2}+41x+21=18\times \frac{9x+7}{9}\left(x+\frac{3}{2}\right)
Add \frac{7}{9} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
18x^{2}+41x+21=18\times \frac{9x+7}{9}\times \frac{2x+3}{2}
Add \frac{3}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
18x^{2}+41x+21=18\times \frac{\left(9x+7\right)\left(2x+3\right)}{9\times 2}
Multiply \frac{9x+7}{9} times \frac{2x+3}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
18x^{2}+41x+21=18\times \frac{\left(9x+7\right)\left(2x+3\right)}{18}
Multiply 9 times 2.
18x^{2}+41x+21=\left(9x+7\right)\left(2x+3\right)
Cancel out 18, the greatest common factor in 18 and 18.
x ^ 2 +\frac{41}{18}x +\frac{7}{6} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 18
r + s = -\frac{41}{18} rs = \frac{7}{6}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{41}{36} - u s = -\frac{41}{36} + u
Two numbers r and s sum up to -\frac{41}{18} exactly when the average of the two numbers is \frac{1}{2}*-\frac{41}{18} = -\frac{41}{36}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{41}{36} - u) (-\frac{41}{36} + u) = \frac{7}{6}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{7}{6}
\frac{1681}{1296} - u^2 = \frac{7}{6}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{7}{6}-\frac{1681}{1296} = -\frac{169}{1296}
Simplify the expression by subtracting \frac{1681}{1296} on both sides
u^2 = \frac{169}{1296} u = \pm\sqrt{\frac{169}{1296}} = \pm \frac{13}{36}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{41}{36} - \frac{13}{36} = -1.500 s = -\frac{41}{36} + \frac{13}{36} = -0.778
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}