Solve for x
x=\frac{\sqrt{94}}{18}-\frac{1}{9}\approx 0.427519984
x=-\frac{\sqrt{94}}{18}-\frac{1}{9}\approx -0.649742206
Graph
Share
Copied to clipboard
18x^{2}+4x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 18\left(-5\right)}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 4 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 18\left(-5\right)}}{2\times 18}
Square 4.
x=\frac{-4±\sqrt{16-72\left(-5\right)}}{2\times 18}
Multiply -4 times 18.
x=\frac{-4±\sqrt{16+360}}{2\times 18}
Multiply -72 times -5.
x=\frac{-4±\sqrt{376}}{2\times 18}
Add 16 to 360.
x=\frac{-4±2\sqrt{94}}{2\times 18}
Take the square root of 376.
x=\frac{-4±2\sqrt{94}}{36}
Multiply 2 times 18.
x=\frac{2\sqrt{94}-4}{36}
Now solve the equation x=\frac{-4±2\sqrt{94}}{36} when ± is plus. Add -4 to 2\sqrt{94}.
x=\frac{\sqrt{94}}{18}-\frac{1}{9}
Divide -4+2\sqrt{94} by 36.
x=\frac{-2\sqrt{94}-4}{36}
Now solve the equation x=\frac{-4±2\sqrt{94}}{36} when ± is minus. Subtract 2\sqrt{94} from -4.
x=-\frac{\sqrt{94}}{18}-\frac{1}{9}
Divide -4-2\sqrt{94} by 36.
x=\frac{\sqrt{94}}{18}-\frac{1}{9} x=-\frac{\sqrt{94}}{18}-\frac{1}{9}
The equation is now solved.
18x^{2}+4x-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
18x^{2}+4x-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
18x^{2}+4x=-\left(-5\right)
Subtracting -5 from itself leaves 0.
18x^{2}+4x=5
Subtract -5 from 0.
\frac{18x^{2}+4x}{18}=\frac{5}{18}
Divide both sides by 18.
x^{2}+\frac{4}{18}x=\frac{5}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}+\frac{2}{9}x=\frac{5}{18}
Reduce the fraction \frac{4}{18} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{2}{9}x+\left(\frac{1}{9}\right)^{2}=\frac{5}{18}+\left(\frac{1}{9}\right)^{2}
Divide \frac{2}{9}, the coefficient of the x term, by 2 to get \frac{1}{9}. Then add the square of \frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{9}x+\frac{1}{81}=\frac{5}{18}+\frac{1}{81}
Square \frac{1}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{9}x+\frac{1}{81}=\frac{47}{162}
Add \frac{5}{18} to \frac{1}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{9}\right)^{2}=\frac{47}{162}
Factor x^{2}+\frac{2}{9}x+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{9}\right)^{2}}=\sqrt{\frac{47}{162}}
Take the square root of both sides of the equation.
x+\frac{1}{9}=\frac{\sqrt{94}}{18} x+\frac{1}{9}=-\frac{\sqrt{94}}{18}
Simplify.
x=\frac{\sqrt{94}}{18}-\frac{1}{9} x=-\frac{\sqrt{94}}{18}-\frac{1}{9}
Subtract \frac{1}{9} from both sides of the equation.
x ^ 2 +\frac{2}{9}x -\frac{5}{18} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 18
r + s = -\frac{2}{9} rs = -\frac{5}{18}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{9} - u s = -\frac{1}{9} + u
Two numbers r and s sum up to -\frac{2}{9} exactly when the average of the two numbers is \frac{1}{2}*-\frac{2}{9} = -\frac{1}{9}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{9} - u) (-\frac{1}{9} + u) = -\frac{5}{18}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{18}
\frac{1}{81} - u^2 = -\frac{5}{18}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{18}-\frac{1}{81} = -\frac{47}{162}
Simplify the expression by subtracting \frac{1}{81} on both sides
u^2 = \frac{47}{162} u = \pm\sqrt{\frac{47}{162}} = \pm \frac{\sqrt{47}}{\sqrt{162}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{9} - \frac{\sqrt{47}}{\sqrt{162}} = -0.650 s = -\frac{1}{9} + \frac{\sqrt{47}}{\sqrt{162}} = 0.428
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}