Solve for x, y
x=40
y=-18
Graph
Share
Copied to clipboard
10x+16y=112
Consider the second equation. Add 16y to both sides.
18x+11y=522,10x+16y=112
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
18x+11y=522
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
18x=-11y+522
Subtract 11y from both sides of the equation.
x=\frac{1}{18}\left(-11y+522\right)
Divide both sides by 18.
x=-\frac{11}{18}y+29
Multiply \frac{1}{18} times -11y+522.
10\left(-\frac{11}{18}y+29\right)+16y=112
Substitute -\frac{11y}{18}+29 for x in the other equation, 10x+16y=112.
-\frac{55}{9}y+290+16y=112
Multiply 10 times -\frac{11y}{18}+29.
\frac{89}{9}y+290=112
Add -\frac{55y}{9} to 16y.
\frac{89}{9}y=-178
Subtract 290 from both sides of the equation.
y=-18
Divide both sides of the equation by \frac{89}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{11}{18}\left(-18\right)+29
Substitute -18 for y in x=-\frac{11}{18}y+29. Because the resulting equation contains only one variable, you can solve for x directly.
x=11+29
Multiply -\frac{11}{18} times -18.
x=40
Add 29 to 11.
x=40,y=-18
The system is now solved.
10x+16y=112
Consider the second equation. Add 16y to both sides.
18x+11y=522,10x+16y=112
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}18&11\\10&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}522\\112\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}18&11\\10&16\end{matrix}\right))\left(\begin{matrix}18&11\\10&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}18&11\\10&16\end{matrix}\right))\left(\begin{matrix}522\\112\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}18&11\\10&16\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}18&11\\10&16\end{matrix}\right))\left(\begin{matrix}522\\112\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}18&11\\10&16\end{matrix}\right))\left(\begin{matrix}522\\112\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{18\times 16-11\times 10}&-\frac{11}{18\times 16-11\times 10}\\-\frac{10}{18\times 16-11\times 10}&\frac{18}{18\times 16-11\times 10}\end{matrix}\right)\left(\begin{matrix}522\\112\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{89}&-\frac{11}{178}\\-\frac{5}{89}&\frac{9}{89}\end{matrix}\right)\left(\begin{matrix}522\\112\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{89}\times 522-\frac{11}{178}\times 112\\-\frac{5}{89}\times 522+\frac{9}{89}\times 112\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\-18\end{matrix}\right)
Do the arithmetic.
x=40,y=-18
Extract the matrix elements x and y.
10x+16y=112
Consider the second equation. Add 16y to both sides.
18x+11y=522,10x+16y=112
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 18x+10\times 11y=10\times 522,18\times 10x+18\times 16y=18\times 112
To make 18x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 18.
180x+110y=5220,180x+288y=2016
Simplify.
180x-180x+110y-288y=5220-2016
Subtract 180x+288y=2016 from 180x+110y=5220 by subtracting like terms on each side of the equal sign.
110y-288y=5220-2016
Add 180x to -180x. Terms 180x and -180x cancel out, leaving an equation with only one variable that can be solved.
-178y=5220-2016
Add 110y to -288y.
-178y=3204
Add 5220 to -2016.
y=-18
Divide both sides by -178.
10x+16\left(-18\right)=112
Substitute -18 for y in 10x+16y=112. Because the resulting equation contains only one variable, you can solve for x directly.
10x-288=112
Multiply 16 times -18.
10x=400
Add 288 to both sides of the equation.
x=40
Divide both sides by 10.
x=40,y=-18
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}