Factor
\left(6r-5\right)\left(3r+4\right)
Evaluate
\left(6r-5\right)\left(3r+4\right)
Share
Copied to clipboard
a+b=9 ab=18\left(-20\right)=-360
Factor the expression by grouping. First, the expression needs to be rewritten as 18r^{2}+ar+br-20. To find a and b, set up a system to be solved.
-1,360 -2,180 -3,120 -4,90 -5,72 -6,60 -8,45 -9,40 -10,36 -12,30 -15,24 -18,20
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -360.
-1+360=359 -2+180=178 -3+120=117 -4+90=86 -5+72=67 -6+60=54 -8+45=37 -9+40=31 -10+36=26 -12+30=18 -15+24=9 -18+20=2
Calculate the sum for each pair.
a=-15 b=24
The solution is the pair that gives sum 9.
\left(18r^{2}-15r\right)+\left(24r-20\right)
Rewrite 18r^{2}+9r-20 as \left(18r^{2}-15r\right)+\left(24r-20\right).
3r\left(6r-5\right)+4\left(6r-5\right)
Factor out 3r in the first and 4 in the second group.
\left(6r-5\right)\left(3r+4\right)
Factor out common term 6r-5 by using distributive property.
18r^{2}+9r-20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
r=\frac{-9±\sqrt{9^{2}-4\times 18\left(-20\right)}}{2\times 18}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-9±\sqrt{81-4\times 18\left(-20\right)}}{2\times 18}
Square 9.
r=\frac{-9±\sqrt{81-72\left(-20\right)}}{2\times 18}
Multiply -4 times 18.
r=\frac{-9±\sqrt{81+1440}}{2\times 18}
Multiply -72 times -20.
r=\frac{-9±\sqrt{1521}}{2\times 18}
Add 81 to 1440.
r=\frac{-9±39}{2\times 18}
Take the square root of 1521.
r=\frac{-9±39}{36}
Multiply 2 times 18.
r=\frac{30}{36}
Now solve the equation r=\frac{-9±39}{36} when ± is plus. Add -9 to 39.
r=\frac{5}{6}
Reduce the fraction \frac{30}{36} to lowest terms by extracting and canceling out 6.
r=-\frac{48}{36}
Now solve the equation r=\frac{-9±39}{36} when ± is minus. Subtract 39 from -9.
r=-\frac{4}{3}
Reduce the fraction \frac{-48}{36} to lowest terms by extracting and canceling out 12.
18r^{2}+9r-20=18\left(r-\frac{5}{6}\right)\left(r-\left(-\frac{4}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{6} for x_{1} and -\frac{4}{3} for x_{2}.
18r^{2}+9r-20=18\left(r-\frac{5}{6}\right)\left(r+\frac{4}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
18r^{2}+9r-20=18\times \frac{6r-5}{6}\left(r+\frac{4}{3}\right)
Subtract \frac{5}{6} from r by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
18r^{2}+9r-20=18\times \frac{6r-5}{6}\times \frac{3r+4}{3}
Add \frac{4}{3} to r by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
18r^{2}+9r-20=18\times \frac{\left(6r-5\right)\left(3r+4\right)}{6\times 3}
Multiply \frac{6r-5}{6} times \frac{3r+4}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
18r^{2}+9r-20=18\times \frac{\left(6r-5\right)\left(3r+4\right)}{18}
Multiply 6 times 3.
18r^{2}+9r-20=\left(6r-5\right)\left(3r+4\right)
Cancel out 18, the greatest common factor in 18 and 18.
x ^ 2 +\frac{1}{2}x -\frac{10}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 18
r + s = -\frac{1}{2} rs = -\frac{10}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{4} - u s = -\frac{1}{4} + u
Two numbers r and s sum up to -\frac{1}{2} exactly when the average of the two numbers is \frac{1}{2}*-\frac{1}{2} = -\frac{1}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{4} - u) (-\frac{1}{4} + u) = -\frac{10}{9}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{10}{9}
\frac{1}{16} - u^2 = -\frac{10}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{10}{9}-\frac{1}{16} = -\frac{169}{144}
Simplify the expression by subtracting \frac{1}{16} on both sides
u^2 = \frac{169}{144} u = \pm\sqrt{\frac{169}{144}} = \pm \frac{13}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{4} - \frac{13}{12} = -1.333 s = -\frac{1}{4} + \frac{13}{12} = 0.833
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}