Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

6\left(3q^{2}+q\right)
Factor out 6.
q\left(3q+1\right)
Consider 3q^{2}+q. Factor out q.
6q\left(3q+1\right)
Rewrite the complete factored expression.
18q^{2}+6q=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
q=\frac{-6±\sqrt{6^{2}}}{2\times 18}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-6±6}{2\times 18}
Take the square root of 6^{2}.
q=\frac{-6±6}{36}
Multiply 2 times 18.
q=\frac{0}{36}
Now solve the equation q=\frac{-6±6}{36} when ± is plus. Add -6 to 6.
q=0
Divide 0 by 36.
q=-\frac{12}{36}
Now solve the equation q=\frac{-6±6}{36} when ± is minus. Subtract 6 from -6.
q=-\frac{1}{3}
Reduce the fraction \frac{-12}{36} to lowest terms by extracting and canceling out 12.
18q^{2}+6q=18q\left(q-\left(-\frac{1}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{1}{3} for x_{2}.
18q^{2}+6q=18q\left(q+\frac{1}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
18q^{2}+6q=18q\times \frac{3q+1}{3}
Add \frac{1}{3} to q by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
18q^{2}+6q=6q\left(3q+1\right)
Cancel out 3, the greatest common factor in 18 and 3.