Solve for a
a=18+\frac{303}{n}
n\neq 0
Solve for n
n=-\frac{303}{18-a}
a\neq 18
Share
Copied to clipboard
an+3=18n+306
Swap sides so that all variable terms are on the left hand side.
an=18n+306-3
Subtract 3 from both sides.
an=18n+303
Subtract 3 from 306 to get 303.
na=18n+303
The equation is in standard form.
\frac{na}{n}=\frac{18n+303}{n}
Divide both sides by n.
a=\frac{18n+303}{n}
Dividing by n undoes the multiplication by n.
a=18+\frac{303}{n}
Divide 18n+303 by n.
18n+306-an=3
Subtract an from both sides.
18n-an=3-306
Subtract 306 from both sides.
18n-an=-303
Subtract 306 from 3 to get -303.
\left(18-a\right)n=-303
Combine all terms containing n.
\frac{\left(18-a\right)n}{18-a}=-\frac{303}{18-a}
Divide both sides by 18-a.
n=-\frac{303}{18-a}
Dividing by 18-a undoes the multiplication by 18-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}