Solve for A (complex solution)
\left\{\begin{matrix}A=-\frac{2\left(3Bm-21m-3n-7\right)}{3n+B}\text{, }&n\neq -\frac{B}{3}\\A\in \mathrm{C}\text{, }&\left(m=-\frac{1}{3}\text{ and }n=-\frac{B}{3}\right)\text{ or }\left(n=-\frac{7}{3}\text{ and }B=7\right)\end{matrix}\right.
Solve for B (complex solution)
\left\{\begin{matrix}B=-\frac{-42m+3An-6n-14}{6m+A}\text{, }&m\neq -\frac{A}{6}\\B\in \mathrm{C}\text{, }&\left(m=-\frac{1}{3}\text{ and }A=2\right)\text{ or }\left(n=-\frac{7}{3}\text{ and }m=-\frac{A}{6}\right)\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=-\frac{2\left(3Bm-21m-3n-7\right)}{3n+B}\text{, }&n\neq -\frac{B}{3}\\A\in \mathrm{R}\text{, }&\left(m=-\frac{1}{3}\text{ and }n=-\frac{B}{3}\right)\text{ or }\left(n=-\frac{7}{3}\text{ and }B=7\right)\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-\frac{-42m+3An-6n-14}{6m+A}\text{, }&m\neq -\frac{A}{6}\\B\in \mathrm{R}\text{, }&\left(m=-\frac{1}{3}\text{ and }A=2\right)\text{ or }\left(n=-\frac{7}{3}\text{ and }m=-\frac{A}{6}\right)\end{matrix}\right.
Share
Copied to clipboard
18mn+42m+6n+14=18mn+6mB+3An+AB
Use the distributive property to multiply 6m+A by 3n+B.
18mn+6mB+3An+AB=18mn+42m+6n+14
Swap sides so that all variable terms are on the left hand side.
6mB+3An+AB=18mn+42m+6n+14-18mn
Subtract 18mn from both sides.
6mB+3An+AB=42m+6n+14
Combine 18mn and -18mn to get 0.
3An+AB=42m+6n+14-6mB
Subtract 6mB from both sides.
\left(3n+B\right)A=42m+6n+14-6mB
Combine all terms containing A.
\left(3n+B\right)A=14+6n+42m-6Bm
The equation is in standard form.
\frac{\left(3n+B\right)A}{3n+B}=\frac{14+6n+42m-6Bm}{3n+B}
Divide both sides by 3n+B.
A=\frac{14+6n+42m-6Bm}{3n+B}
Dividing by 3n+B undoes the multiplication by 3n+B.
A=\frac{2\left(7+3n+21m-3Bm\right)}{3n+B}
Divide 42m+6n+14-6mB by 3n+B.
18mn+42m+6n+14=18mn+6mB+3An+AB
Use the distributive property to multiply 6m+A by 3n+B.
18mn+6mB+3An+AB=18mn+42m+6n+14
Swap sides so that all variable terms are on the left hand side.
6mB+3An+AB=18mn+42m+6n+14-18mn
Subtract 18mn from both sides.
6mB+3An+AB=42m+6n+14
Combine 18mn and -18mn to get 0.
6mB+AB=42m+6n+14-3An
Subtract 3An from both sides.
\left(6m+A\right)B=42m+6n+14-3An
Combine all terms containing B.
\left(6m+A\right)B=42m-3An+6n+14
The equation is in standard form.
\frac{\left(6m+A\right)B}{6m+A}=\frac{42m-3An+6n+14}{6m+A}
Divide both sides by 6m+A.
B=\frac{42m-3An+6n+14}{6m+A}
Dividing by 6m+A undoes the multiplication by 6m+A.
18mn+42m+6n+14=18mn+6mB+3An+AB
Use the distributive property to multiply 6m+A by 3n+B.
18mn+6mB+3An+AB=18mn+42m+6n+14
Swap sides so that all variable terms are on the left hand side.
6mB+3An+AB=18mn+42m+6n+14-18mn
Subtract 18mn from both sides.
6mB+3An+AB=42m+6n+14
Combine 18mn and -18mn to get 0.
3An+AB=42m+6n+14-6mB
Subtract 6mB from both sides.
\left(3n+B\right)A=42m+6n+14-6mB
Combine all terms containing A.
\left(3n+B\right)A=14+6n+42m-6Bm
The equation is in standard form.
\frac{\left(3n+B\right)A}{3n+B}=\frac{14+6n+42m-6Bm}{3n+B}
Divide both sides by 3n+B.
A=\frac{14+6n+42m-6Bm}{3n+B}
Dividing by 3n+B undoes the multiplication by 3n+B.
A=\frac{2\left(7+3n+21m-3Bm\right)}{3n+B}
Divide 42m+6n+14-6mB by 3n+B.
18mn+42m+6n+14=18mn+6mB+3An+AB
Use the distributive property to multiply 6m+A by 3n+B.
18mn+6mB+3An+AB=18mn+42m+6n+14
Swap sides so that all variable terms are on the left hand side.
6mB+3An+AB=18mn+42m+6n+14-18mn
Subtract 18mn from both sides.
6mB+3An+AB=42m+6n+14
Combine 18mn and -18mn to get 0.
6mB+AB=42m+6n+14-3An
Subtract 3An from both sides.
\left(6m+A\right)B=42m+6n+14-3An
Combine all terms containing B.
\left(6m+A\right)B=42m-3An+6n+14
The equation is in standard form.
\frac{\left(6m+A\right)B}{6m+A}=\frac{42m-3An+6n+14}{6m+A}
Divide both sides by 6m+A.
B=\frac{42m-3An+6n+14}{6m+A}
Dividing by 6m+A undoes the multiplication by 6m+A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}