Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}=\frac{8}{18}
Divide both sides by 18.
a^{2}=\frac{4}{9}
Reduce the fraction \frac{8}{18} to lowest terms by extracting and canceling out 2.
a^{2}-\frac{4}{9}=0
Subtract \frac{4}{9} from both sides.
9a^{2}-4=0
Multiply both sides by 9.
\left(3a-2\right)\left(3a+2\right)=0
Consider 9a^{2}-4. Rewrite 9a^{2}-4 as \left(3a\right)^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
a=\frac{2}{3} a=-\frac{2}{3}
To find equation solutions, solve 3a-2=0 and 3a+2=0.
a^{2}=\frac{8}{18}
Divide both sides by 18.
a^{2}=\frac{4}{9}
Reduce the fraction \frac{8}{18} to lowest terms by extracting and canceling out 2.
a=\frac{2}{3} a=-\frac{2}{3}
Take the square root of both sides of the equation.
a^{2}=\frac{8}{18}
Divide both sides by 18.
a^{2}=\frac{4}{9}
Reduce the fraction \frac{8}{18} to lowest terms by extracting and canceling out 2.
a^{2}-\frac{4}{9}=0
Subtract \frac{4}{9} from both sides.
a=\frac{0±\sqrt{0^{2}-4\left(-\frac{4}{9}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{4}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-\frac{4}{9}\right)}}{2}
Square 0.
a=\frac{0±\sqrt{\frac{16}{9}}}{2}
Multiply -4 times -\frac{4}{9}.
a=\frac{0±\frac{4}{3}}{2}
Take the square root of \frac{16}{9}.
a=\frac{2}{3}
Now solve the equation a=\frac{0±\frac{4}{3}}{2} when ± is plus.
a=-\frac{2}{3}
Now solve the equation a=\frac{0±\frac{4}{3}}{2} when ± is minus.
a=\frac{2}{3} a=-\frac{2}{3}
The equation is now solved.